GEFÖRDERT VOM

für Bildung

und Forschung

Bundesministerium



**Europäischen Union** 



German **Research Center** for Artificial ntelligence

### **AnoMed-Seminar**

#### Towards Privacy and Utility in Tourette Tic Detection Through Pretraining Based on Publicly Available Video Data of Healthy Subjects

Nele Sophie Brügge, Esfandiar Mohammadi, Alexander Münchau, Tobias Bäumer, Christian Frings, Christian Beste, Veit Roessner, Heinz Handels



### Medical Video Analysis in AnoMed

GEFÖRDERT VOM

für Bildung

und Forschung

Bundesministerium

![](_page_1_Picture_2.jpeg)

![](_page_1_Picture_3.jpeg)

German Research Center for Artificial Intelligence

- Example dataset: Toronto NeuroFace [1]
  - Publicly available dataset
  - Videos of oro-facial gestures performed by subjects with oro-facial impairment due to neurological disorders with amyotrophic lateral sclerosis (ALS) and stroke.
  - Annotations: Clinical scores, facial landmarks

![](_page_1_Figure_9.jpeg)

[1] Bandini, Andrea et al. "A New Dataset for Facial Motion Analysis in Individuals With Neurological Disorders." IEEE journal of biomedical and health informatics vol. 25,4 (2021): 1111-1119. doi:10.1109/JBHI.2020.3019242

### Medical Video Analysis in AnoMed

GEFÖRDERT VOM

für Bildung

und Forschung

Bundesministerium

![](_page_2_Picture_2.jpeg)

![](_page_2_Picture_3.jpeg)

German Research Center for Artificial Intelligence

- Example dataset: Toronto NeuroFace [1]
  - Publicly available dataset
  - Videos of oro-facial gestures performed by subjects with oro-facial impairment due to neurological disorders with amyotrophic lateral sclerosis (ALS) and stroke.
  - Annotations: Clinical scores, facial landmarks

Why should medical videos be analyzed with machine learning? T

[1] Bandini, Andrea et al. "A New Dataset for Facial Motion Analysis in Individuals With Neurological Disorders." IEEE journal of biomedical and health informatics vol. 25,4 (2021): 1111-1119. doi:10.1109/JBHI.2020.3019242

### **Medical Video Analysis**

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

![](_page_3_Picture_3.jpeg)

![](_page_3_Picture_4.jpeg)

German Research Center for Artificial Intelligence

#### **Examples**:

- Gait analysis, e.g. when using prostheses, after injuries or accidents
- **Neurological and motor disorders** (Developmental coordination disorders, stereotypic movement disorders, tic disorders)
- Mental diseases

![](_page_3_Figure_10.jpeg)

[1] Photo: from P. Barros, N. Churamani, E. Lakomkin, H. Siqueira, A. Sutherland, and S. Wermter, "The OMG-Emotion Behavior Dataset," in 2018 International Joint Conference on Neural Networks (IJCNN), Pages: 7, Rio de Janeiro, Brazil: IEEE, Jul. 2018, pp. 1408–1414.

### **Motivation – Tic Detection**

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

![](_page_4_Picture_3.jpeg)

German Research Center for Artificial Intelligence

#### Gilles de la Tourette Syndrome

- Neurodevelopmental disorder
- Prevalence: 0.3 0.9 %

#### **Prior work**

- Limited applicability: Additional sensors, subject-specific, healthy subjects
- No consideration of data privacy

![](_page_4_Figure_11.jpeg)

[1] Photo: from P. Barros, N. Churamani, E. Lakomkin, H. Siqueira, A. Sutherland, and S. Wermter, "The OMG-Emotion Behavior Dataset," in 2018 International Joint Conference on Neural Networks (IJCNN), Pages: 7, Rio de Janeiro, Brazil: IEEE, Jul. 2018, pp. 1408–1414.

### Privacy-Preserving Machine-Learning

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

![](_page_5_Picture_3.jpeg)

![](_page_5_Picture_4.jpeg)

German Research Center for Artificial Intelligence

#### **Ideally**: Encode **general patterns** rather than facts about specific training examples **By default**: Machine learning models do not learn to ignore these specifics

#### **Attack examples:**

- Reconstruction attack [3]
- Membership inference attack [4]

#### Challenges in Medical Video Analysis:

- High-dimensional input data
- Small datasets
- Rare diseases and special cases

![](_page_5_Picture_14.jpeg)

[3] Zhang, Yuheng et al. "The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks." IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 250-258.
 [4] R. Shokri, M. Stronati, C. Song and V. Shmatikov, "Membership Inference Attacks Against Machine Learning Models," 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 2017, pp. 3-18.

### Privacy-Preserving Machine-Learning

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

![](_page_6_Picture_3.jpeg)

er lion German Research Center for Artificial Intelligence

# **Ideally**: Encode **general patterns** rather than facts about specific training examples **By default**: Machine learning models do not learn to ignore these specifics

#### **Attack examples:**

- Reconstruction attack [3]
- Membership inference attack [4]

#### Challenges in Medical Video Analysis:

- High-dimensional input data
- Small datasets
- Rare diseases and special cases

![](_page_6_Picture_14.jpeg)

[3] Zhang, Yuheng et al. "The Secret Revealer: Generative Model-Inversion Attacks Against Deep Neural Networks." IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 250-258.
 [4] R. Shokri, M. Stronati, C. Song and V. Shmatikov, "Membership Inference Attacks Against Machine Learning Models," 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 2017, pp. 3-18.

### Amplifying Membership Inference Attacks

GEFÖRDERT VOM

![](_page_7_Picture_2.jpeg)

Finanziert von der Europäischen Union

of a random classifier

![](_page_7_Picture_4.jpeg)

German Research Center for Artificial Intelligence

![](_page_7_Figure_6.jpeg)

- $X_i$ : Random variables in {0,1}
- *p*: Expectation value of  $X_i$
- $\delta$ : Deviation from expected result

GEFÖRDERT VOM

![](_page_8_Figure_2.jpeg)

![](_page_8_Picture_3.jpeg)

![](_page_8_Picture_4.jpeg)

German Research Center for Artificial Intelligence

### **Stage 1:** Contrastive Learning with landmarks

![](_page_8_Figure_7.jpeg)

Photo from: P. Barros, N. Churamani, E. Lakomkin, H. Siqueira, A. Sutherland, and S. Wermter, "The OMG-Emotion Behavior Dataset," in 2018 International Joint Conference on Neural Networks (IJCNN), Pages: 7, Rio de Janeiro, Brazil: IEEE, Jul. 2018, pp. 1408–1414.

GEFÖRDERT VOM

![](_page_9_Figure_2.jpeg)

![](_page_9_Picture_3.jpeg)

Ge Re for inte

German Research Center for Artificial Intelligence

![](_page_9_Figure_7.jpeg)

GEFÖRDERT VOM

![](_page_10_Figure_2.jpeg)

![](_page_10_Picture_3.jpeg)

![](_page_10_Picture_4.jpeg)

German Research Center for Artificial Intelligence

![](_page_10_Figure_7.jpeg)

GEFÖRDERT VOM

![](_page_11_Figure_2.jpeg)

![](_page_11_Picture_3.jpeg)

![](_page_11_Picture_4.jpeg)

German Research Center for Artificial Intelligence

![](_page_11_Figure_7.jpeg)

GEFÖRDERT VOM

![](_page_12_Figure_2.jpeg)

![](_page_12_Picture_3.jpeg)

![](_page_12_Picture_4.jpeg)

German Research Center for Artificial Intelligence

![](_page_12_Figure_7.jpeg)

GEFÖRDERT VOM

![](_page_13_Figure_2.jpeg)

![](_page_13_Picture_3.jpeg)

![](_page_13_Picture_4.jpeg)

German Research Center for Artificial Intelligence

### Stage 1: Contrastive Learning with landmarks

![](_page_13_Figure_7.jpeg)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

![](_page_14_Picture_3.jpeg)

![](_page_14_Picture_4.jpeg)

**Stage 2:** Training a classifier based on Contrastive Learning features

![](_page_14_Figure_6.jpeg)

Photos from: P. Barros, N. Churamani, E. Lakomkin, H. Siqueira, A. Sutherland, and S. Wermter, "The OMG-Emotion Behavior Dataset," in 2018 International Joint Conference on Neural Networks (IJCNN), Pages: 7, Rio de Janeiro, Brazil: IEEE, Jul. 2018, pp. 1408–1414.

### Tic Detection and Attack Results

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

![](_page_15_Picture_3.jpeg)

German Research Center for Artificial Intelligence

| Method                             | MIA<br>Accuracy | Amplified<br>MIA<br>P[ <i>random</i> ] | Tic Detection<br>Accuracy |
|------------------------------------|-----------------|----------------------------------------|---------------------------|
| Fully-Supervised CNN               | 73.10           | 4.07                                   | 81.92                     |
| Fully-supervised CNN<br>+ augment  | 65.65           | 23.00                                  | 85.76                     |
| Pretraining +<br>Classifier        | 52.15           | 97.26                                  | 86.53                     |
| DP-Training of<br>Classifier (ε=1) | 50.14           | 99.80                                  | 80.09                     |

(Amplified) membership inference attack (MIA) and tic detection accuracy for three different deep learning approaches.

![](_page_15_Picture_7.jpeg)

Most important landmarks determined via SHAP analyis

GEFÖRDERT VOM

![](_page_16_Picture_1.jpeg)

Bundesministerium für Bildung und Forschung

![](_page_16_Picture_3.jpeg)

![](_page_16_Picture_4.jpeg)

German Research Center for Artificial Intelligence

- Supervised training on small medical datasets
  → models leak information about training data
- Amplification of membership attacks if multiple inputs per subjects are used
- Two-stage learning approach leveraging data of healthy subjects
  - Contrastive learning on landmarks
  - Effectively defends against MIAs
  - Reaches the highest classification accuracy of 86.5 %
  - Useful for various medical-related problems

![](_page_16_Figure_13.jpeg)

GEFÖRDERT VOM Bundesministerium für Bildung

und Forschung

![](_page_17_Picture_2.jpeg)

![](_page_17_Picture_3.jpeg)

#### **Next steps:**

- Provide provable privacy guarantees + and good utility also for small datasets
- Prepare AnoMed privacy challenge for video data

![](_page_17_Figure_7.jpeg)

![](_page_17_Figure_8.jpeg)

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

![](_page_18_Picture_3.jpeg)

![](_page_18_Picture_4.jpeg)

German Research Center for Artificial Intelligence

#### **Next steps:**

- Provide provable privacy guarantees + and good utility also for small datasets
- Prepare AnoMed privacy challenge for video data

![](_page_18_Figure_9.jpeg)

## Differentially-private finetuning of large deep learning models

- Finetuning only the parameters that change the most during a gradient update
- Find the most efficient network update to save privacy budget
- Find collisions of two data points of different classes the in the neural network and finetune only this region
- Finetune a low-rank approximation of the original network weights

GEFÖRDERT VOM Bundesministerium für Bildung

und Forschung

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

German Research Center for Artificial Intelligence

#### **Next steps:**

- Provide provable privacy guarantees + and good utility also for small datasets
- Prepare AnoMed privacy challenge for video data

![](_page_19_Figure_8.jpeg)

![](_page_19_Figure_9.jpeg)

### Contact

**GEFÖRDERT VOM** 

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

![](_page_20_Picture_4.jpeg)

German **Research Center** for Artificial Intelligence

#### Nele Sophie Brügge

Researcher

**DFKI Branch Office Lübeck** 

Artificial Intelligence in Medical Image Processing

Ratzeburger Allee 160 23562 Lübeck

![](_page_20_Picture_11.jpeg)

nele.bruegge@dfki.de

![](_page_20_Picture_13.jpeg)

![](_page_20_Picture_14.jpeg)