

WP 3.12: Anonymity Guarantees Against Attackers with Partial Background Knowledge

Dennis Breutigam

29/02/24

IM FOCUS DAS LEBEN

How to Model Privacy

Personal data is needed for all kind of research. Tradeoff: Utility of the data versus privacy of the individuals. How to Model Privacy

Personal data is needed for all kind of research. Tradeoff: Utility of the data versus privacy of the individuals.

Publish Modified Database

- Data reduction
- Microaggregation
 - k-anonymity

How to Model Privacy

Personal data is needed for all kind of research. Tradeoff: Utility of the data versus privacy of the individuals.

Publish Modified Database

- Data reduction
- Microaggregation
 - k-anonymity

Secret Database - Allow Queries

- Give modified answers.
- Use entropy of the data.

Common Models

- Noiseless Privacy (NP)
- Differential Privacy (DP)

Example Database

ID	Name	Weight	Age	Height
1	Bob	72	37	177
2	Alice	57	44	154
3	Maja	78	91	162

Example Database

ID	Name	Weight	Age	Height
1	Bob	72	37	177
2	Alice	57	44	154
3	Maja	78	91	162

Database

- An individual I is a vector of the space $W = (W_i)_{i=1}^d$.
- A database D^n of n individuals is a sequence of individuals.
- The universe of possible databases $\mathbf{D}^n \subseteq W^n$.
- Assume individuals as independent identical distributed.

Queries

- A query is a deterministic function $F: W^n \to A$.
- Where *A* denotes the set of possible answers.

Queries

- A query is a deterministic function $F: W^n \to A$.
- Where *A* denotes the set of possible answers.

Example Queries

- Average income of inhabitants.
- Number of patients with disease...
- Number of young smokers with high blood pressure.

Queries

- A query is a deterministic function $F: W^n \to A$.
- Where *A* denotes the set of possible answers.

Example Queries

- Average income of inhabitants.
- Number of patients with disease...
- Number of young smokers with high blood pressure.

Nessessary Properties of Queries

- Not tailored to specific entries of the database.
- Symmetric functions

Property Queries

For arbitrary $U \subseteq W$ query F_U asks for the percentage of individuals that have property U.

 \blacksquare π_U a priori probability to have property *U*.

Property Queries

For arbitrary $U \subseteq W$ query F_U asks for the percentage of individuals that have property U.

 \blacksquare π_U a priori probability to have property *U*.

Extreme Probabilities

- Problems arise for π_U close to 0 or 1.
 - Rare diseases

Noise Mechanisms

Adding noise to an answer to hide personal information.

- For this consider a random mechanism *M*.
 - Adding gaussian noise to the average income of inhabitants.
- \blacksquare (F, M) is the query F complemented by M.

How do we distinguish between databases that contain the sensitive elements and those that do not?

¹Calibrating noise to sensitivity in private data analysis. - Dwork et. al.

How do we distinguish between databases that contain the sensitive elements and those that do not?

(ϵ,δ) – indistinguishability $^{\rm 1}$

Two random variables X, Y are indistinguishable $X \approx_{\epsilon, \delta} Y$ if

$$\begin{aligned} \Pr\left[X \in S\right] &\leq e^{\epsilon} \Pr\left[Y \in S\right] + \delta \\ \Pr\left[Y \in S\right] &\leq e^{\epsilon} \Pr\left[X \in S\right] + \delta \end{aligned}$$

for all measurable sets S.

¹Calibrating noise to sensitivity in private data analysis. - Dwork et. al.

How do we distinguish between databases that contain the sensitive elements and those that do not?

(ϵ, δ) – indistinguishability ¹

Two random variables X, Y are indistinguishable $X \approx_{\epsilon \delta} Y$ if

> $\Pr\left[X \in S\right] \le e^{\epsilon} \Pr\left[Y \in S\right] + \delta$ $\Pr\left[Y \in S\right] \le e^{\epsilon} \Pr\left[X \in S\right] + \delta$

for all measurable sets S.

Privacy Ratio

$$R_Y^X(S) := \frac{\Pr\left[X \in S\right]}{\Pr\left[Y \in S\right]}.$$

¹Calibrating noise to sensitivity in private data analysis. - Dwork et. al.

 (ϵ,δ) – Differential $\rm Privacy^1$


```
(\epsilon, \delta) – Differential Privacy<sup>1</sup>
```


- **Uses** neighborhood relationship on \mathbf{D}^n .
- \blacksquare For all adjacent databases $w,w^{\star}\in\mathbf{D}^{n}$

 $(F,M)(w) \approx_{\epsilon,\delta} (F,M)(w^\star).$

```
(\epsilon, \delta) – Differential Privacy<sup>1</sup>
```


- Uses neighborhood relationship on \mathbf{D}^n .
- \blacksquare For all adjacent databases $w,w^{\star}\in\mathbf{D}^{n}$

 $(F,M)(w) \approx_{\epsilon,\delta} (F,M)(w^\star).$

Attacker knows the full database but the one sensitive entry.

- Strong privacy guarantees.
- Estimates needed noise.
- Important impact on the utility.

²Noiseless Database Privacy - Bhaskar et. al.

- Distribution \mathcal{D}^n on \mathbf{D}^n .
- Condition the distribution, such that an individual *i* has different properties α, β.
 - $\mathcal{D}^n_{i\leftarrow\alpha} \coloneqq \mathcal{D}^n \mid_{\mathcal{D}^n_i=\alpha}$

```
F(\mathcal{D}^n_{i\leftarrow\alpha})\approx_{\epsilon,\delta}F(\mathcal{D}^n_{i\leftarrow\beta})
```


- Distribution \mathcal{D}^n on \mathbf{D}^n .
- Condition the distribution, such that an individual *i* has different properties α, β.
 - $\mathcal{D}^n_{i\leftarrow\alpha} \coloneqq \mathcal{D}^n \mid_{\mathcal{D}^n_i=\alpha}$

 $F(\mathcal{D}^n_{i\leftarrow\alpha})\approx_{\epsilon,\delta}F(\mathcal{D}^n_{i\leftarrow\beta})$

- \mathcal{D}^n parameters are public knowledge.
- ightarrow Attackers knowledge as condition.
- Utilizes entropy in the data.
- Analyzes deterministic queries.

Distribution \mathcal{D}^n on \mathbf{D}^n .

For all $i \in \{1, \dots, n\}$ individuals and possible values $\alpha, \beta \in W$

 $(F,M)(\mathcal{D}^n_{i\leftarrow\alpha})\approx_{\epsilon,\delta}(F,M)(\mathcal{D}^n_{i\leftarrow\beta})$

- Distribution \mathcal{D}^n on \mathbf{D}^n .
- For all $i \in \{1, \dots, n\}$ individuals and possible values $\alpha, \beta \in W$

 $(F,M)(\mathcal{D}^n_{i\leftarrow\alpha})\approx_{\epsilon,\delta}(F,M)(\mathcal{D}^n_{i\leftarrow\beta})$

- Utilizes entropy in the data.
- Estimates needed noise.
- Complex interactions of Distributions.

Analyzing Distributional Privacy

Analysis method

- 1. Comparison of different methods for adding noise.
- 2. Compare the utility loss.
- 3. Take π_U into account.

Analyzing Distributional Privacy

Analysis method

- 1. Comparison of different methods for adding noise.
- 2. Compare the utility loss.
- 3. Take π_U into account.

Quality measurment

- Utility loss: Amount of noise used.
 - Variance of noise ψ .
- **Privacy parameters:** (ϵ, δ)

Direct Addition

Using the mechanism M, which works as follows: $(F, M) = F + N_M$

A common mechanism in Differential Privacy.

Direct Addition

Using the mechanism M, which works as follows: $(F, M) = F + N_M$

A common mechanism in Differential Privacy.

 $N_M^{\mathcal{L}ap} \sim \mathcal{L}ap(0,\psi)$ - Laplace Noise

Gives pure DP guarantees.

 $N_M^{\mathcal{N}} \sim \mathcal{N}(0,\psi)$ - Gaussian Noise

Convenient properties.Commonly used.

Subsampling

Mechanism ${\cal S}_m$ draws subset uniformly.

- m size of subset.
- $\lambda = m/n$ selection probability.

³Privacy Amplification by Subsampling: Tight Analyses via Coupling and Divergences, Balle et. al.

Subsampling

Mechanism ${\cal S}_m$ draws subset uniformly.

- m size of subset.
- $\lambda = m/n$ selection probability.

Characteristics

- Enhances DP mechanisms³.
- Low interaction with underlying distribution.

³Privacy Amplification by Subsampling: Tight Analyses via Coupling and Divergences, Balle et. al.

Subsampling and Differential Privacy

Parameters Obtained

- **Property queries are** (0, 1)-DP.
- Indistinguishability must hold for any database pair.
- Consider databases w, w' where either non or one has the U property.
 - F_U only possible answers are 0 and 1/m.

$$R_{(F_U,S)(w')}^{(F_U,S)(w)} = \frac{\lambda Pr\left[(F_U,S)(w) = 1/m \mid x_1 \in S\right] + (1-\lambda)Pr\left[(F_U,S)(w) = 1/m \mid x_1 \notin S\right]}{\lambda Pr\left[(F_U,S)(w') = 1/m \mid x_1' \in S\right] + (1-\lambda)Pr\left[(F_U,S)(w') = 1/m \mid x_1' \notin S\right]}$$

 $\to~$ This can take the form 1/0, in which case its probability mass is $\lambda.$ It further holds that (F_U,S_m) is $(0,\delta)$ -DP.

Find the events for which the ratio is not bounded!

Query Distribution

- $\mathcal{B}in(n, \pi_U)$ the binomial distribution with n trials and probability π_U .
- ${\color{black} \hspace{0.1in} \hspace{0.1in} \hspace{0.1in} F_U(\mathcal{D}^n) \sim (1/n) \mathcal{B}in(n,\pi_U)}$
- Subsampling of size m independent of \mathcal{D}^n .
- $\blacksquare \ (F_U,S_m)(\mathcal{D}^n) \sim (1/m)\mathcal{B}in(m,\pi_U)$

Conditional Propabilitys

Two cases for the sensitive entry *i*:

1.
$$\mathcal{D}_i^n \in U$$

2.
$$\mathcal{D}_i^n \notin U$$

Thus we consider $(F_U,S_m)(\mathcal{D}^n_{i\in U}):=(F_U,S_m)(\mathcal{D}^n\mid_{\mathcal{D}^n_i\in U}).$

Find the events for which the ratio is not bounded!

Query Distribution

- $\mathcal{B}in(n, \pi_U)$ the binomial distribution with n trials and probability π_U .
- ${\color{black} \hspace{0.1in} \hspace{0.1in} \hspace{0.1in} F_U(\mathcal{D}^n) \sim (1/n) \mathcal{B}in(n,\pi_U)}$
- Subsampling of size m independent of \mathcal{D}^n .

$$\blacksquare \ (F_U,S_m)(\mathcal{D}^n) \sim (1/m)\mathcal{B}in(m,\pi_U)$$

Ratio

Conditional Propabilitys

Two cases for the sensitive entry *i*:

1.
$$\mathcal{D}_i^n \in U$$

2.
$$\mathcal{D}_i^n \notin U$$

$$\begin{split} \text{Thus we consider} \\ (F_U,S_m)(\mathcal{D}^n_{i\in U}) &:= (F_U,S_m)(\mathcal{D}^n\mid_{\mathcal{D}^n_i\in U}). \end{split}$$

$$R_{(F_U,S_m)(\mathcal{D}^n_{i\notin U})}^{(F_U,S_m)(\mathcal{D}^n_{i\notin U})} = \frac{\lambda j + (1-\lambda)m\pi_U}{\lambda(m-j)\left(\frac{\pi_U}{1-\pi_U}\right) + (1-\lambda)m\pi_U}$$

Ratio Bound

- Ratio is monotone.
- Consider the ratio as continuous function.

$$e^{\epsilon} = R^{(F_U,S_m)(\mathcal{D}^n_{i\notin U})}_{(F_U,S_m)(\mathcal{D}^n_{i\in U})}((1+\gamma)\pi_U).$$

Solved by

$$\gamma^{\star} = \lambda^{-1} \frac{e^{\epsilon} - 1}{1 + e^{\epsilon} \frac{\pi_U}{1 - \pi_U}}.$$

Ratio Bound

- Ratio is monotone.
- Consider the ratio as continuous function.
- $\label{eq:find_states} \begin{array}{l} \textbf{Find} \ \gamma \ \textbf{such that} \\ e^\epsilon = R_{(F_U,S_m)(\mathcal{D}_{i \notin U}^n)}^{(F_U,S_m)(\mathcal{D}_{i \notin U}^n)}((1+\gamma)\pi_U). \end{array}$

Bound δ

Since the ratio is symmetric we have

$$\delta \leq \Pr\left[(F,M)(\mathcal{D}^n_{i\leftarrow\alpha}) \geq \lambda^{-1} \frac{e^\epsilon - 1}{1 + e^\epsilon \frac{\pi_U}{1-\pi_U}}\right].$$

This can be used to calculate δ exactly.

Solved by

$$\gamma^{\star} = \lambda^{-1} \frac{e^{\epsilon} - 1}{1 + e^{\epsilon} \frac{\pi_U}{1 - \pi_U}}.$$

Subsampling and Distributional Privacy Setting: $n = 1000, \epsilon = 0.1$

Subsampling and Distributional Privacy

Subsampling and Distributional Privacy in Realtion to π_U

Subsampling boosts privacy of property queries!

Added Noise and Distributional Privacy

Calculating δ

The goal is to bound the ratios in dependence of the variance ψ .

- $\blacksquare (F_U, M)(\mathcal{D}^n)$ mixed distributions.
 - Since the noise sample space is **R**.
 - Consider all outcomes of $F_U(\mathcal{D}^n)$.

Added Noise and Distributional Privacy

Calculating δ

The goal is to bound the ratios in dependence of the variance ψ .

- $\ \ \, \blacksquare \ \, (F_U,M)(\mathcal{D}^n) \text{ mixed distributions.}$
 - Since the noise sample space is **R**.
 - Consider all outcomes of $F_U(\mathcal{D}^n)$.

Laplace Noise

We archive pure ϵ -Distributional Privacy for

$$\epsilon \geq \frac{1}{\psi \cdot n}.$$

Gaussian Noise

The curve of (ϵ,δ) can be computed but as bound we get

$$\delta \leq \Pr\left[(F_U,M) \geq \epsilon \cdot n \cdot \psi^2 + \frac{1}{2n}\right].$$

Added Noise and Distributional Privacy

Computing δ for Gaussian Noise

Take ratios of probability density functions $dR_{(F_U,M)(\mathcal{D}_{i\notin U}^n)}^{(\mathcal{F}_U,M)(\mathcal{D}_{i\notin U}^n)}$ and compute the zero x^{\star} of

$$\frac{\sum_{j=0}^{n-1} e^{-\frac{1}{2} \left(\frac{x-((j+1)/n)}{\psi}\right)^2} {\binom{n-1}{j} \pi_F^j (1-\pi_F)^{n-j-1}}}{\sum_{j=0}^{n-1} e^{-\frac{1}{2} \left(\frac{x-(j/n)}{\psi}\right)^2} {\binom{n-1}{j} \pi_F^j (1-\pi_F)^{n-j-1}}} - e^{\epsilon}.$$

Then compute the integral

$$\delta = \int_{x^{\star}}^{\infty} \left(1 - \frac{e^{\epsilon}}{\mathsf{d}R_{(F_{U},M)(\mathcal{D}_{i\notin U}^{n})}^{(F_{U},M)(\mathcal{D}_{i\notin U}^{n})}(s)} \right) \sum_{j=0}^{n-1} e^{-\frac{1}{2} \left(\frac{x - ((j+1)/n)}{\psi}\right)^{2}} \binom{n-1}{j} \pi_{F}^{j} (1 - \pi_{F})^{n-j-1} \mathsf{d}x.$$

How does the mechanism affect the quality of the queries answer?

Method

- Consider (F_U, M) as estimator for π_U .
 - Calculate its quadratic error.
- \blacksquare The expected quadratic difference of (F_U,M) to $F_U\!.$

How does the mechanism affect the quality of the queries answer?

Method

- Consider (F_U, M) as estimator for π_U .
 - Calculate its quadratic error.
- \blacksquare The expected quadratic difference of (F_U,M) to $F_U\!.$

Subsampling Estimator

- $\blacksquare \ (F_U,M) \sim (1/m) \mathcal{B}in(m,\pi_U)$
- \blacksquare Therefore $({\cal F}_U, {\cal M})$ is unbiased.

How does the mechanism affect the quality of the queries answer?

Method

- Consider (F_U, M) as estimator for π_U .
 - Calculate its quadratic error.
- \blacksquare The expected quadratic difference of (F_U,M) to $F_U\!.$

Subsampling Estimator

- $\blacksquare \ (F_U,M) \sim (1/m) \mathcal{B}in(m,\pi_U)$
- \blacksquare Therefore $({\cal F}_U, {\cal M})$ is unbiased.

The variance is known as

$$MSE((F_U,M)) = \frac{\pi_U(1-\pi_U)}{m}.$$

Expected Difference Subsampling

$$\mathbf{E}_{\mathcal{D}^n}\left[\left(\left(F_U,M\right)-F_U\right)^2\right]=\frac{\pi_U(1-\pi_U)}{m}-\frac{\pi_U(1-\pi_U)}{n}.$$

Expected Difference Subsampling

$$\mathbf{E}_{\mathcal{D}^n}\left[\left(\left(F_U,M\right)-F_U\right)^2\right]=\frac{\pi_U(1-\pi_U)}{m}-\frac{\pi_U(1-\pi_U)}{n}.$$

Added Noise

Assuming mean-free independent noise:

Expected difference equals the variance.

Expected Difference Subsampling

$$\mathbf{E}_{\mathcal{D}^n}\left[\left(\left(F_U,M\right)-F_U\right)^2\right]=\frac{\pi_U(1-\pi_U)}{m}-\frac{\pi_U(1-\pi_U)}{n}.$$

Added Noise

Assuming mean-free independent noise:

Expected difference equals the variance.

The mean square error:

$$MSE((F_U,M)) = \frac{\pi_U(1-\pi_U)}{n} + \mathrm{Var}\left(N_M\right)$$

Privacy comparison under fixed error

Comparison of the amplifying effect of different mechanisms.

Fixing the Error

- Added noise error equals the variance.
- Determine the variance with respect to the selection probability.
- Calculate the privacy parameters.

Privacy comparison under fixed error

Comparison of the amplifying effect of different mechanisms.

Fixing the Error

- Added noise error equals the variance.
- Determine the variance with respect to the selection probability.
- Calculate the privacy parameters.

Subsampling with selection probability λ has the same utility as added noise with variance:

$$\psi = \frac{\pi_U(1-\pi_U)}{\lambda n}(1-\lambda)$$

Privacy Comparison under Fixed Error

Setting:
$$n = 1000, \lambda = 1/\sqrt{n}$$

Privacy comparison under different π_U Values

Setting: $n = 1000, \lambda = 1/\sqrt{n}$

Privacy Comparison Gauss and Subsampling

Further Work

Subsampling

- General privacy amplification theorem.
- Composition queries.
 - Handling knowledge growth.
 - Reduce dependencies between queries.
 - Handling of privacy budget.

Model Extensions

- Handling knowledge growth/change.
 - Composition queries.