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How to Model Privacy

Personal data is needed for all kind of research.
Tradeoff: Utility of the data versus privacy of the individuals.

Publish Modified Database
Data reduction
Microaggregation

𝑘-anonymity

Secret Database - Allow Queries

Give modified answers.

Use entropy of the data.

Common Models
Noiseless Privacy (NP)

Differential Privacy (DP)
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Formal Structure

Example Database

Database
An individual 𝐼 is a vector of the space 𝑊 = (𝑊𝑖)𝑑

𝑖=1.

A database 𝐷𝑛 of 𝑛 individuals is a sequence of individuals.

The universe of possible databases D𝑛 ⊆ 𝑊 𝑛.

Assume individuals as independent identical distributed.
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Formal Structure

Queries
A query is a deterministic function 𝐹∶ 𝑊 𝑛 → 𝐴.

Where 𝐴 denotes the set of possible answers.

Example Queries

Average income of inhabitants.

Number of patients with disease…

Number of young smokers with high
blood pressure.

Nessessary Properties of Queries

Not tailored to specific entries of the
database.

Symmetric functions
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Formal Structure

Property Queries
For arbitrary 𝑈 ⊆ 𝑊 query 𝐹𝑈 asks for the percentage of individuals that have property 𝑈.

𝜋𝑈 a priori probability to have property 𝑈.

Extreme Probabilities
Problems arise for 𝜋𝑈 close to 0 or 1.

Rare diseases
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Formal Structure

Noise Mechanisms
Adding noise to an answer to hide personal information.

For this consider a random mechanism 𝑀.
Adding gaussian noise to the average income of inhabitants.

(𝐹 , 𝑀) is the query 𝐹 complemented by 𝑀.

6 / 27



Formal Structure

How do we distinguish between databases that contain the sensitive elements and those
that do not?

(𝜖, 𝛿) – indistinguishability 1

Two random variables 𝑋, 𝑌 are
indistinguishable 𝑋 ≈𝜖,𝛿 𝑌 if

𝑃𝑟 [𝑋 ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [𝑌 ∈ 𝑆] + 𝛿
𝑃𝑟 [𝑌 ∈ 𝑆] ≤ 𝑒𝜖𝑃𝑟 [𝑋 ∈ 𝑆] + 𝛿

for all measurable sets 𝑆.

Privacy Ratio 𝑅𝑋
𝑌 (𝑆) ∶= 𝑃𝑟 [𝑋 ∈ 𝑆]

𝑃𝑟 [𝑌 ∈ 𝑆]
.

1Calibrating noise to sensitivity in private data analysis. - Dwork et. al.
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Underlying privacy notions

(𝜖, 𝛿) – Differential Privacy1

Uses neighborhood relationship on D𝑛.

For all adjacent databases 𝑤, 𝑤⋆ ∈ D𝑛

(𝐹 , 𝑀)(𝑤) ≈𝜖,𝛿 (𝐹 , 𝑀)(𝑤⋆).

Attacker knows the full database but the one
sensitive entry.

Strong privacy guarantees.

Estimates needed noise.

Important impact on the utility.

8 / 27



Underlying privacy notions

(𝜖, 𝛿) – Differential Privacy1

Uses neighborhood relationship on D𝑛.

For all adjacent databases 𝑤, 𝑤⋆ ∈ D𝑛

(𝐹 , 𝑀)(𝑤) ≈𝜖,𝛿 (𝐹 , 𝑀)(𝑤⋆).

Attacker knows the full database but the one
sensitive entry.

Strong privacy guarantees.

Estimates needed noise.

Important impact on the utility.

8 / 27



Underlying privacy notions

(𝜖, 𝛿) – Differential Privacy1

Uses neighborhood relationship on D𝑛.

For all adjacent databases 𝑤, 𝑤⋆ ∈ D𝑛

(𝐹 , 𝑀)(𝑤) ≈𝜖,𝛿 (𝐹 , 𝑀)(𝑤⋆).

Attacker knows the full database but the one
sensitive entry.

Strong privacy guarantees.

Estimates needed noise.

Important impact on the utility.

8 / 27



Underlying privacy notions

(𝜖, 𝛿) – Noiseless Privacy2

Distribution 𝒟𝑛 on D𝑛.
Condition the distribution, such that an
individual 𝑖 has different properties 𝛼, 𝛽.

𝒟𝑛
𝑖←𝛼 ∶= 𝒟𝑛 ∣𝒟𝑛

𝑖 =𝛼

𝐹(𝒟𝑛
𝑖←𝛼) ≈𝜖,𝛿 𝐹(𝒟𝑛

𝑖←𝛽)

𝒟𝑛 parameters are public knowledge.

→ Attackers knowledge as condition.

Utilizes entropy in the data.

Analyzes deterministic queries.

2Noiseless Database Privacy - Bhaskar et. al. 9 / 27
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Underlying privacy notions

(𝜖, 𝛿) – Distributional Privacy

Distribution 𝒟𝑛 on D𝑛.

For all 𝑖 ∈ {1, … , 𝑛} individuals and possible
values 𝛼, 𝛽 ∈ 𝑊

(𝐹 , 𝑀)(𝒟𝑛
𝑖←𝛼) ≈𝜖,𝛿 (𝐹 , 𝑀)(𝒟𝑛

𝑖←𝛽)

Utilizes entropy in the data.

Estimates needed noise.

Complex interactions of
Distributions.

10 / 27



Underlying privacy notions

(𝜖, 𝛿) – Distributional Privacy

Distribution 𝒟𝑛 on D𝑛.

For all 𝑖 ∈ {1, … , 𝑛} individuals and possible
values 𝛼, 𝛽 ∈ 𝑊

(𝐹 , 𝑀)(𝒟𝑛
𝑖←𝛼) ≈𝜖,𝛿 (𝐹 , 𝑀)(𝒟𝑛

𝑖←𝛽)

Utilizes entropy in the data.

Estimates needed noise.

Complex interactions of
Distributions.

10 / 27



Underlying privacy notions

(𝜖, 𝛿) – Distributional Privacy

Distribution 𝒟𝑛 on D𝑛.

For all 𝑖 ∈ {1, … , 𝑛} individuals and possible
values 𝛼, 𝛽 ∈ 𝑊

(𝐹 , 𝑀)(𝒟𝑛
𝑖←𝛼) ≈𝜖,𝛿 (𝐹 , 𝑀)(𝒟𝑛

𝑖←𝛽)

Utilizes entropy in the data.

Estimates needed noise.

Complex interactions of
Distributions.

10 / 27



Analyzing Distributional Privacy

Analysis method

1. Comparison of different methods for adding noise.

2. Compare the utility loss.

3. Take 𝜋𝑈 into account.

Quality measurment

Utility loss: Amount of noise used.
Variance of noise 𝜓.

Privacy parameters: (𝜖, 𝛿)
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Noise Sources

Direct Addition
Using the mechanism 𝑀, which works as follows: (𝐹 , 𝑀) = 𝐹 + 𝑁𝑀

A common mechanism in Differential Privacy.

𝑁ℒ𝑎𝑝
𝑀 ∼ ℒ𝑎𝑝(0, 𝜓) - Laplace Noise

Gives pure DP guarantees.

𝑁𝒩
𝑀 ∼ 𝒩(0, 𝜓) - Gaussian Noise

Convenient properties.

Commonly used.
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Noise Sources

Subsampling
Mechanism 𝑆𝑚 draws subset uniformly.

𝑚 size of subset.

𝜆 = 𝑚/𝑛 selection probability.

Characteristics
Enhances DP mechanisms3.

Low interaction with underlying distribution.

3Privacy Amplification by Subsampling: Tight Analyses via Coupling and Divergences, Balle et. al.
13 / 27
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Subsampling and Differential Privacy

Parameters Obtained
Property queries are (0, 1)-DP.

Indistinguishability must hold for any database pair.
Consider databases 𝑤, 𝑤′ where either non or one has the 𝑈 property.

𝐹𝑈 only possible answers are 0 and 1/𝑚.

𝑅(𝐹𝑈,𝑆)(𝑤)
(𝐹𝑈,𝑆)(𝑤′) = 𝜆𝑃𝑟 [(𝐹𝑈, 𝑆)(𝑤) = 1/𝑚 ∣ 𝑥1 ∈ 𝑆] + (1 − 𝜆)𝑃𝑟 [(𝐹𝑈, 𝑆)(𝑤) = 1/𝑚 ∣ 𝑥1 ∉ 𝑆]

𝜆𝑃𝑟 [(𝐹𝑈, 𝑆)(𝑤′) = 1/𝑚 ∣ 𝑥′
1 ∈ 𝑆] + (1 − 𝜆)𝑃𝑟 [(𝐹𝑈, 𝑆)(𝑤′) = 1/𝑚 ∣ 𝑥′

1 ∉ 𝑆]

→ This can take the form 1/0, in which case its probability mass is 𝜆.

It further holds that (𝐹𝑈, 𝑆𝑚) is (0, 𝛿)-DP.
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Subsampling and Distributional Privacy

Find the events for which the ratio is not bounded!

Query Distribution

ℬ𝑖𝑛(𝑛, 𝜋𝑈) the binomial distribution
with 𝑛 trials and probability 𝜋𝑈.

𝐹𝑈(𝒟𝑛) ∼ (1/𝑛)ℬ𝑖𝑛(𝑛, 𝜋𝑈)
Subsampling of size 𝑚 independent of
𝒟𝑛.

(𝐹𝑈, 𝑆𝑚)(𝒟𝑛) ∼ (1/𝑚)ℬ𝑖𝑛(𝑚, 𝜋𝑈)

Conditional Propabilitys
Two cases for the sensitive entry 𝑖:
1. 𝒟𝑛

𝑖 ∈ 𝑈
2. 𝒟𝑛

𝑖 ∉ 𝑈
Thus we consider
(𝐹𝑈, 𝑆𝑚)(𝒟𝑛

𝑖∈𝑈) ∶= (𝐹𝑈, 𝑆𝑚)(𝒟𝑛 ∣𝒟𝑛
𝑖 ∈𝑈).

Ratio

𝑅
(𝐹𝑈,𝑆𝑚)(𝒟𝑛

𝑖∉𝑈)
(𝐹𝑈,𝑆𝑚)(𝒟𝑛

𝑖∈𝑈) = 𝜆𝑗 + (1 − 𝜆)𝑚𝜋𝑈

𝜆(𝑚 − 𝑗) ( 𝜋𝑈
1−𝜋𝑈

) + (1 − 𝜆)𝑚𝜋𝑈
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Subsampling and Distributional Privacy

Ratio Bound

Ratio is monotone.

Consider the ratio as continuous
function.

Find 𝛾 such that

𝑒𝜖 = 𝑅
(𝐹𝑈,𝑆𝑚)(𝒟𝑛

𝑖∉𝑈)
(𝐹𝑈,𝑆𝑚)(𝒟𝑛

𝑖∈𝑈)((1 + 𝛾)𝜋𝑈).

Solved by

𝛾⋆ = 𝜆−1 𝑒𝜖 − 1
1 + 𝑒𝜖 𝜋𝑈

1−𝜋𝑈

.

Bound 𝛿
Since the ratio is symmetric we have

𝛿 ≤ 𝑃𝑟 [(𝐹 , 𝑀)(𝒟𝑛
𝑖←𝛼) ≥ 𝜆−1 𝑒𝜖 − 1

1 + 𝑒𝜖 𝜋𝑈
1−𝜋𝑈

] .

This can be used to calculate 𝛿 exactly.
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Subsampling and Distributional Privacy

Subsampling and Distributional Privacy
Setting: 𝑛 = 1000, 𝜖 = 0.1

For 𝜋𝑈 = 0.5 and 𝜋𝑈 = 0.75
and small steps of 𝜆 ∈ [0, 1].

Small steps of 𝜆 ∈ [0, 1],
the step ratio where 𝜋𝑈 = 0.5.
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Subsampling and Distributional Privacy

Subsampling and Distributional Privacy in Realtion to 𝜋𝑈

Comparison DP 𝛿 and distributional 𝛿
for the same 𝜖 and variable 𝜆.

Changes in 𝛿 for 𝜖 = 0.001
and small steps 𝜋𝑈 ∈ [0.5, 1].

Subsampling boosts privacy of property queries!
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Added Noise and Distributional Privacy

Calculating 𝛿
The goal is to bound the ratios in dependence of the variance 𝜓.

(𝐹𝑈, 𝑀)(𝒟𝑛) mixed distributions.
Since the noise sample space is R.
Consider all outcomes of 𝐹𝑈(𝒟𝑛).

Laplace Noise
We archive pure 𝜖-Distributional Privacy for

𝜖 ≥ 1
𝜓 ⋅ 𝑛

.

Gaussian Noise
The curve of (𝜖, 𝛿) can be computed but as
bound we get

𝛿 ≤ 𝑃𝑟 [(𝐹𝑈, 𝑀) ≥ 𝜖 ⋅ 𝑛 ⋅ 𝜓2 + 1
2𝑛

] .
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Added Noise and Distributional Privacy

Computing 𝛿 for Gaussian Noise
Take ratios of probability density functions d𝑅

(𝐹𝑈,𝑀)(𝒟𝑛
𝑖∉𝑈)

(𝐹𝑈,𝑀)(𝒟𝑛
𝑖∈𝑈) and compute the zero 𝑥⋆ of

∑𝑛−1
𝑗=0 𝑒− 1

2 ( 𝑥−((𝑗+1)/𝑛)
𝜓 )

2

(𝑛−1
𝑗 )𝜋𝑗

𝐹(1 − 𝜋𝐹)𝑛−𝑗−1

∑𝑛−1
𝑗=0 𝑒− 1

2 ( 𝑥−(𝑗/𝑛)
𝜓 )

2

(𝑛−1
𝑗 )𝜋𝑗

𝐹(1 − 𝜋𝐹)𝑛−𝑗−1
− 𝑒𝜖.

Then compute the integral

𝛿 = ∫
∞

𝑥⋆

⎛⎜⎜
⎝

1 − 𝑒𝜖

d𝑅
(𝐹𝑈,𝑀)(𝒟𝑛

𝑖∉𝑈)
(𝐹𝑈,𝑀)(𝒟𝑛

𝑖∈𝑈)(𝑠)
⎞⎟⎟
⎠

𝑛−1
∑
𝑗=0

𝑒− 1
2 ( 𝑥−((𝑗+1)/𝑛)

𝜓 )
2

(𝑛 − 1
𝑗

)𝜋𝑗
𝐹(1 − 𝜋𝐹)𝑛−𝑗−1d𝑥.

20 / 27



Error Estimation

How does the mechanism affect the quality of the queries answer?

Method
Consider (𝐹𝑈, 𝑀) as estimator for 𝜋𝑈.

Calculate its quadratic error.

The expected quadratic difference of (𝐹𝑈, 𝑀) to 𝐹𝑈.

Subsampling Estimator

(𝐹𝑈, 𝑀) ∼ (1/𝑚)ℬ𝑖𝑛(𝑚, 𝜋𝑈)
Therefore (𝐹𝑈, 𝑀) is unbiased.

The variance is known as

𝑀𝑆𝐸((𝐹𝑈, 𝑀)) = 𝜋𝑈(1 − 𝜋𝑈)
𝑚

.
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Error Estimation

Expected Difference Subsampling

E𝒟𝑛 [((𝐹𝑈, 𝑀) − 𝐹𝑈)2] = 𝜋𝑈(1 − 𝜋𝑈)
𝑚

− 𝜋𝑈(1 − 𝜋𝑈)
𝑛

.

Added Noise
Assuming mean-free independent noise:

Expected difference equals the variance.

The mean square error:

𝑀𝑆𝐸((𝐹𝑈, 𝑀)) = 𝜋𝑈(1 − 𝜋𝑈)
𝑛

+ Var (𝑁𝑀)
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Privacy comparison under fixed error

Comparison of the amplifying effect of different mechanisms.

Fixing the Error

Added noise error equals the variance.

Determine the variance with respect to the selection probability.

Calculate the privacy parameters.

Subsampling with selection probability 𝜆 has the same utility as added noise with
variance:

𝜓 = 𝜋𝑈(1 − 𝜋𝑈)
𝜆𝑛

(1 − 𝜆)
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Privacy Comparison under Fixed Error

Setting: 𝑛 = 1000, 𝜆 = 1/
√

𝑛

𝜖 of Laplace-Noise for 𝛿 = 0
in small 𝜋𝑈 steps.

𝛿 of (𝐹𝑈, 𝑆𝑚) to the
right side 𝜖/

√
𝑛, 𝜋𝑈 combination.
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Privacy comparison under different 𝜋𝑈 Values

Setting: 𝑛 = 1000, 𝜆 = 1/
√

𝑛

𝜖 of Laplace-Noise for 𝛿 = 0. Here adjust 𝜖/𝑛 and 𝜖/𝑛2.
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Privacy Comparison Gauss and Subsampling

Setting: 𝑛 = 100, 𝜆 = 1/
√

𝑛

𝛿 comparison for gauss 𝜖 ∈ [0.05, 0.5]
for subsampling the 𝜖 was amplified by 0.1.
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FurtherWork

Subsampling

General privacy amplification theorem.
Composition queries.

Handling knowledge growth.
Reduce dependencies between queries.
Handling of privacy budget.

Model Extensions
Handling knowledge growth/change.

Composition queries.
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