WP 3.12: Anonymity Guarantees Against Attackers with Partial Background Knowledge

Dennis Breutigam

29/02/24

How to Model Privacy

Personal data is needed for all kind of research.
Tradeoff: Utility of the data versus privacy of the individuals.

How to Model Privacy

Personal data is needed for all kind of research. Tradeoff: Utility of the data versus privacy of the individuals.

Publish Modified Database

- Data reduction
- Microaggregation
- k-anonymity

How to Model Privacy

Personal data is needed for all kind of research. Tradeoff: Utility of the data versus privacy of the individuals.

Publish Modified Database

- Data reduction
- Microaggregation
- k-anonymity

Secret Database - Allow Queries

- Give modified answers.
- Use entropy of the data.

Common Models

- Noiseless Privacy (NP)
- Differential Privacy (DP)

Formal Structure

Example Database

ID	Name	Weight	Age	Height
1	Bob	72	37	177
2	Alice	57	44	154
3	Maja	78	91	162
\ldots	\ldots	\ldots	\ldots	\ldots

Formal Structure

Example Database

ID	Name	Weight	Age	Height
1	Bob	72	37	177
2	Alice	57	44	154
3	Maja	78	91	162
\ldots	\ldots	\ldots	\ldots	\ldots

Database

- An individual I is a vector of the space $W=\left(W_{i}\right)_{i=1}^{d}$.
- A database D^{n} of n individuals is a sequence of individuals.
- The universe of possible databases $\mathbf{D}^{n} \subseteq W^{n}$.

■ Assume individuals as independent identical distributed.

Formal Structure

Queries

- A query is a deterministic function $F: W^{n} \rightarrow A$.
\square Where A denotes the set of possible answers.

Formal Structure

Queries

- A query is a deterministic function $F: W^{n} \rightarrow A$.
- Where A denotes the set of possible answers.

Example Queries

- Average income of inhabitants.
- Number of patients with disease...
- Number of young smokers with high blood pressure.

Formal Structure

Queries

- A query is a deterministic function $F: W^{n} \rightarrow A$.
\square Where A denotes the set of possible answers.

Example Queries

- Average income of inhabitants.
- Number of patients with disease...
- Number of young smokers with high blood pressure.

Nessessary Properties of Queries

- Not tailored to specific entries of the database.
- Symmetric functions

Formal Structure

Property Queries

For arbitrary $U \subseteq W$ query F_{U} asks for the percentage of individuals that have property U.

- π_{U} a priori probability to have property U.

Formal Structure

Property Queries

For arbitrary $U \subseteq W$ query F_{U} asks for the percentage of individuals that have property U.

- π_{U} a priori probability to have property U.

Extreme Probabilities

- Problems arise for π_{U} close to 0 or 1 .
- Rare diseases

Formal Structure

Noise Mechanisms

Adding noise to an answer to hide personal information.

- For this consider a random mechanism M.
- Adding gaussian noise to the average income of inhabitants.
- (F, M) is the query F complemented by M.

Formal Structure

How do we distinguish between databases that contain the sensitive elements and those that do not?

[^0]
Formal Structure

How do we distinguish between databases that contain the sensitive elements and those that do not?
(ϵ, δ) - indistinguishability ${ }^{1}$
Two random variables X, Y are indistinguishable $X \approx_{\epsilon, \delta} Y$ if

$$
\begin{aligned}
& \operatorname{Pr}[X \in S] \leq e^{\epsilon} \operatorname{Pr}[Y \in S]+\delta \\
& \operatorname{Pr}[Y \in S] \leq e^{\epsilon} \operatorname{Pr}[X \in S]+\delta
\end{aligned}
$$

for all measurable sets S.

[^1]
Formal Structure

How do we distinguish between databases that contain the sensitive elements and those that do not?
(ϵ, δ) - indistinguishability ${ }^{1}$
Two random variables X, Y are indistinguishable $X \approx_{\epsilon, \delta} Y$ if

$$
\begin{aligned}
& \operatorname{Pr}[X \in S] \leq e^{\epsilon} \operatorname{Pr}[Y \in S]+\delta \\
& \operatorname{Pr}[Y \in S] \leq e^{\epsilon} \operatorname{Pr}[X \in S]+\delta
\end{aligned}
$$

for all measurable sets S.

$$
\text { Privacy Ratio } \quad R_{Y}^{X}(S):=\frac{\operatorname{Pr}[X \in S]}{\operatorname{Pr}[Y \in S]} .
$$

[^2]
Underlying privacy notions

(ϵ, δ) - Differential Privacy ${ }^{1}$

Underlying privacy notions

(ϵ, δ) - Differential Privacy ${ }^{1}$

- Uses neighborhood relationship on \mathbf{D}^{n}.
- For all adjacent databases $w, w^{\star} \in \mathbf{D}^{n}$

$$
(F, M)(w) \approx_{\epsilon, \delta}(F, M)\left(w^{\star}\right)
$$

Underlying privacy notions

(ϵ, δ) - Differential Privacy ${ }^{1}$

- Uses neighborhood relationship on \mathbf{D}^{n}.
- For all adjacent databases $w, w^{\star} \in \mathbf{D}^{n}$

$$
(F, M)(w) \approx_{\epsilon, \delta}(F, M)\left(w^{\star}\right)
$$

Attacker knows the full database but the one sensitive entry.

- Strong privacy guarantees.
- Estimates needed noise.
- Important impact on the utility.

Underlying privacy notions

(ϵ, δ) - Noiseless Privacy ${ }^{2}$

[^3]
Underlying privacy notions

(ϵ, δ) - Noiseless Privacy ${ }^{2}$

- Distribution \mathcal{D}^{n} on \mathbf{D}^{n}.
- Condition the distribution, such that an individual i has different properties α, β.
- $\mathcal{D}_{i \leftarrow \alpha}^{n}:=\left.\mathcal{D}^{n}\right|_{\mathcal{D}_{i}^{n}=\alpha}$

$$
F\left(\mathcal{D}_{i \leftarrow \alpha}^{n}\right) \approx_{\epsilon, \delta} F\left(\mathcal{D}_{i \leftarrow \beta}^{n}\right)
$$

[^4]
Underlying privacy notions

(ϵ, δ) - Noiseless Privacy ${ }^{2}$

- Distribution \mathcal{D}^{n} on \mathbf{D}^{n}.
- Condition the distribution, such that an individual i has different properties α, β.
- $\mathcal{D}_{i \leftarrow \alpha}^{n}:=\left.\mathcal{D}^{n}\right|_{\mathcal{D}_{i}^{n}=\alpha}$

$$
F\left(\mathcal{D}_{i \leftarrow \alpha}^{n}\right) \approx_{\epsilon, \delta} F\left(\mathcal{D}_{i \leftarrow \beta}^{n}\right)
$$

\mathcal{D}^{n} parameters are public knowledge.
\rightarrow Attackers knowledge as condition.

- Utilizes entropy in the data.
- Analyzes deterministic queries.

[^5]
Underlying privacy notions

(ϵ, δ) - Distributional Privacy

Underlying privacy notions

(ϵ, δ) - Distributional Privacy

- Distribution \mathcal{D}^{n} on \mathbf{D}^{n}.
- For all $i \in\{1, \ldots, n\}$ individuals and possible values $\alpha, \beta \in W$

$$
(F, M)\left(\mathcal{D}_{i \leftarrow \alpha}^{n}\right) \approx_{\epsilon, \delta}(F, M)\left(\mathcal{D}_{i \leftarrow \beta}^{n}\right)
$$

Underlying privacy notions

(ϵ, δ) - Distributional Privacy

- Distribution \mathcal{D}^{n} on \mathbf{D}^{n}.
- For all $i \in\{1, \ldots, n\}$ individuals and possible values $\alpha, \beta \in W$

$$
(F, M)\left(\mathcal{D}_{i \leftarrow \alpha}^{n}\right) \approx_{\epsilon, \delta}(F, M)\left(\mathcal{D}_{i \leftarrow \beta}^{n}\right)
$$

- Utilizes entropy in the data.
- Estimates needed noise.
- Complex interactions of Distributions.

Analyzing Distributional Privacy

Analysis method

1. Comparison of different methods for adding noise.
2. Compare the utility loss.
3. Take π_{U} into account.

Analyzing Distributional Privacy

Analysis method

1. Comparison of different methods for adding noise.
2. Compare the utility loss.
3. Take π_{U} into account.

Quality measurment

- Utility loss: Amount of noise used.
- Variance of noise ψ.
- Privacy parameters: (ϵ, δ)

Noise Sources

Direct Addition

Using the mechanism M, which works as follows: $(F, M)=F+N_{M}$

- A common mechanism in Differential Privacy.

Noise Sources

Direct Addition

Using the mechanism M, which works as follows: $(F, M)=F+N_{M}$

- A common mechanism in Differential Privacy.
$N_{M}^{\mathcal{L a p}} \sim \mathcal{L} a p(0, \psi)$ - Laplace Noise

- Gives pure DP guarantees.

$$
N_{M}^{\mathcal{N}} \sim \mathcal{N}(0, \psi) \text { - Gaussian Noise }
$$

- Convenient properties.
- Commonly used.

Noise Sources

ID	Name	Attribute	Subsampling				
1	Andrew	187		ID	Name	Atrribute	...
2	Anna	153	\longrightarrow	1	Anna	153	
3	Bob	162		2	Berta	178	
4	Berta	178		3	Clemens	165	
5	Clemens	165		4	Darius	184	
6	Cathrine	192		
...		m	Wilca	158	

Subsampling

Mechanism S_{m} draws subset uniformly.

- m size of subset.
- $\lambda=m / n$ selection probability.

[^6]
Noise Sources

ID	Name	Attribute	\ldots	$\xrightarrow{\text { Subsampling }}$				
1	Andrew	187			ID	Name	Attribute	...
2	Anna	153			1	Anna	153	
3	Bob	162			2	Berta	178	
4	Berta	178			3	Clemens	165	
5	Clemens	165			4	Darius	184	
6	Cathrine	192			\ldots	
...		$\xrightarrow{\longrightarrow}$	m	Wilca	158	

Subsampling

Mechanism S_{m} draws subset uniformly.

- m size of subset.
- $\lambda=m / n$ selection probability.

Characteristics

- Enhances DP mechanisms ${ }^{3}$.
- Low interaction with underlying distribution.

[^7]
Subsampling and Differential Privacy

Parameters Obtained

- Property queries are (0,1)-DP.
- Indistinguishability must hold for any database pair.
- Consider databases w, w^{\prime} where either non or one has the U property.
- F_{U} only possible answers are 0 and $1 / \mathrm{m}$.

$$
R_{\left(F_{U}, S\right)\left(w^{\prime}\right)}^{\left(F_{U}, S\right)(w)}=\frac{\lambda \operatorname{Pr}\left[\left(F_{U}, S\right)(w)=1 / m \mid x_{1} \in S\right]+(1-\lambda) \operatorname{Pr}\left[\left(F_{U}, S\right)(w)=1 / m \mid x_{1} \notin S\right]}{\lambda \operatorname{Pr}\left[\left(F_{U}, S\right)\left(w^{\prime}\right)=1 / m \mid x_{1}^{\prime} \in S\right]+(1-\lambda) \operatorname{Pr}\left[\left(F_{U}, S\right)\left(w^{\prime}\right)=1 / m \mid x_{1}^{\prime} \notin S\right]}
$$

\rightarrow This can take the form $1 / 0$, in which case its probability mass is λ. It further holds that $\left(F_{U}, S_{m}\right)$ is $(0, \delta)$-DP.

Subsampling and Distributional Privacy

Find the events for which the ratio is not bounded!

Query Distribution

- $\operatorname{Bin}\left(n, \pi_{U}\right)$ the binomial distribution with n trials and probability π_{U}.
- $F_{U}\left(\mathcal{D}^{n}\right) \sim(1 / n) \mathcal{B i n}\left(n, \pi_{U}\right)$
- Subsampling of size m independent of \mathcal{D}^{n}.
- $\left(F_{U}, S_{m}\right)\left(\mathcal{D}^{n}\right) \sim(1 / m) \operatorname{Bin}\left(m, \pi_{U}\right)$

Conditional Propabilitys

Two cases for the sensitive entry i :

1. $\mathcal{D}_{i}^{n} \in U$
2. $\mathcal{D}_{i}^{n} \notin U$

Thus we consider

$$
\left(F_{U}, S_{m}\right)\left(\mathcal{D}_{i \in U}^{n}\right):=\left(F_{U}, S_{m}\right)\left(\left.\mathcal{D}^{n}\right|_{\mathcal{D}_{i}^{n} \in U}\right)
$$

Subsampling and Distributional Privacy

Find the events for which the ratio is not bounded!

Query Distribution

- $\operatorname{Bin}\left(n, \pi_{U}\right)$ the binomial distribution with n trials and probability π_{U}.
- $F_{U}\left(\mathcal{D}^{n}\right) \sim(1 / n) \mathcal{B i n}\left(n, \pi_{U}\right)$
- Subsampling of size m independent of \mathcal{D}^{n}.
- $\left(F_{U}, S_{m}\right)\left(\mathcal{D}^{n}\right) \sim(1 / m) \operatorname{Bin}\left(m, \pi_{U}\right)$

Conditional Propabilitys

Two cases for the sensitive entry i :

1. $\mathcal{D}_{i}^{n} \in U$
2. $\mathcal{D}_{i}^{n} \notin U$

Thus we consider

$$
\left(F_{U}, S_{m}\right)\left(\mathcal{D}_{i \in U}^{n}\right):=\left(F_{U}, S_{m}\right)\left(\left.\mathcal{D}^{n}\right|_{\mathcal{D}_{i}^{n} \in U}\right)
$$

Ratio

$$
R_{\left(F_{U}, S_{m}\right)\left(\mathcal{D}_{i \in U}^{*}\right)}^{\left(F_{U}, S_{m}\right)\left(\mathcal{D}_{i \neq U}^{n}\right)}=\frac{\lambda j+(1-\lambda) m \pi_{U}}{\lambda(m-j)\left(\frac{\pi_{U}}{1-\pi_{U}}\right)+(1-\lambda) m \pi_{U}}
$$

Subsampling and Distributional Privacy

Ratio Bound

- Ratio is monotone.
- Consider the ratio as continuous function.
- Find γ such that
$e^{\epsilon}=R_{\left(F_{U}, S_{m}\right)\left(\mathcal{D}_{i \in U}^{n}\right)}^{\left(F_{U}, S_{m}\right)\left(\mathcal{D}^{n} n\right)}\left((1+\gamma) \pi_{U}\right)$.
Solved by

$$
\gamma^{\star}=\lambda^{-1} \frac{e^{\epsilon}-1}{1+e^{\epsilon} \frac{\pi_{U}}{1-\pi_{U}}}
$$

Subsampling and Distributional Privacy

Ratio Bound

- Ratio is monotone.
- Consider the ratio as continuous function.
- Find γ such that

$$
e^{\epsilon}=R_{\left(F_{U}, S_{m}\right)\left(\mathcal{D}_{i \in U}^{n}\right)}^{\left(F_{U}, S_{m}\right)\left(\mathcal{D}_{i \neq}^{n}\right)}\left((1+\gamma) \pi_{U}\right) .
$$

Solved by

$$
\gamma^{\star}=\lambda^{-1} \frac{e^{\epsilon}-1}{1+e^{\epsilon} \frac{\pi_{U}}{1-\pi_{U}}}
$$

Bound δ

Since the ratio is symmetric we have

$$
\delta \leq \operatorname{Pr}\left[(F, M)\left(\mathcal{D}_{i \leftarrow \alpha}^{n}\right) \geq \lambda^{-1} \frac{e^{\epsilon}-1}{1+e^{\epsilon} \frac{\pi_{U}}{1-\pi_{U}}}\right]
$$

This can be used to calculate δ exactly.

Subsampling and Distributional Privacy

Subsampling and Distributional Privacy

Setting: $n=1000, \epsilon=0.1$

For $\pi_{U}=0.5$ and $\pi_{U}=0.75$ and small steps of $\lambda \in[0,1]$.

Subsampling and Distributional Privacy

Subsampling and Distributional Privacy in Realtion to π_{U}

Comparison DP δ and distributional δ for the same ϵ and variable λ.

Changes in δ for $\epsilon=0.001$ and small steps $\pi_{U} \in[0.5,1]$.

Subsampling boosts privacy of property queries!

Added Noise and Distributional Privacy

Calculating δ

The goal is to bound the ratios in dependence of the variance ψ.

- $\left(F_{U}, M\right)\left(\mathcal{D}^{n}\right)$ mixed distributions.
- Since the noise sample space is \mathbf{R}.
- Consider all outcomes of $F_{U}\left(\mathcal{D}^{n}\right)$.

Added Noise and Distributional Privacy

Calculating δ

The goal is to bound the ratios in dependence of the variance ψ.
$\square\left(F_{U}, M\right)\left(\mathcal{D}^{n}\right)$ mixed distributions.

- Since the noise sample space is \mathbf{R}.
- Consider all outcomes of $F_{U}\left(\mathcal{D}^{n}\right)$.

Laplace Noise

We archive pure ϵ-Distributional Privacy for

$$
\epsilon \geq \frac{1}{\psi \cdot n}
$$

Gaussian Noise

The curve of (ϵ, δ) can be computed but as bound we get

$$
\delta \leq \operatorname{Pr}\left[\left(F_{U}, M\right) \geq \epsilon \cdot n \cdot \psi^{2}+\frac{1}{2 n}\right]
$$

Added Noise and Distributional Privacy

Computing δ for Gaussian Noise

Take ratios of probability density functions $\mathrm{d} R_{\left(F_{U}, M\right)\left(\mathcal{D}_{i \in U}^{n}\right)}^{\left(F_{U}, M\right)\left(\mathcal{D}^{n} n\right)}$ and compute the zero x^{\star} of

$$
\frac{\sum_{j=0}^{n-1} e^{-\frac{1}{2}\left(\frac{x-((j+1) / n)}{\psi}\right)^{2}}\binom{n-1}{j} \pi_{F}^{j}\left(1-\pi_{F}\right)^{n-j-1}}{\sum_{j=0}^{n-1} e^{-\frac{1}{2}\left(\frac{x-(j / n)}{\psi}\right)^{2}}\binom{n-1}{j} \pi_{F}^{j}\left(1-\pi_{F}\right)^{n-j-1}}-e^{\epsilon} .
$$

Then compute the integral

$$
\delta=\int_{x^{\star}}^{\infty}\left(1-\frac{e^{\epsilon}}{\mathrm{d} R_{\left(F_{U}, M\right)\left(\mathcal{D}_{i \in U}^{n}\right)}^{\left(F_{U}, M\right)\left(\mathcal{D}^{n}\right)}(s)}\right) \sum_{j=0}^{n-1} e^{-\frac{1}{2}\left(\frac{x-((j+1) / n)}{\psi}\right)^{2}}\binom{n-1}{j} \pi_{F}^{j}\left(1-\pi_{F}\right)^{n-j-1} \mathrm{~d} x .
$$

Error Estimation

How does the mechanism affect the quality of the queries answer?

Method

- Consider $\left(F_{U}, M\right)$ as estimator for π_{U}.
- Calculate its quadratic error.
- The expected quadratic difference of $\left(F_{U}, M\right)$ to F_{U}.

Error Estimation

How does the mechanism affect the quality of the queries answer?

Method

- Consider $\left(F_{U}, M\right)$ as estimator for π_{U}.
- Calculate its quadratic error.
- The expected quadratic difference of $\left(F_{U}, M\right)$ to F_{U}.

Subsampling Estimator
$\square\left(F_{U}, M\right) \sim(1 / m) \operatorname{Bin}\left(m, \pi_{U}\right)$

- Therefore $\left(F_{U}, M\right)$ is unbiased.

Error Estimation

How does the mechanism affect the quality of the queries answer?

Method

- Consider $\left(F_{U}, M\right)$ as estimator for π_{U}.
- Calculate its quadratic error.

■ The expected quadratic difference of $\left(F_{U}, M\right)$ to F_{U}.
Subsampling Estimator

- $\left(F_{U}, M\right) \sim(1 / m) \operatorname{Bin}\left(m, \pi_{U}\right)$
- Therefore $\left(F_{U}, M\right)$ is unbiased.

The variance is known as

$$
\operatorname{MSE}\left(\left(F_{U}, M\right)\right)=\frac{\pi_{U}\left(1-\pi_{U}\right)}{m}
$$

Error Estimation

Expected Difference Subsampling

$$
\mathbf{E}_{\mathcal{D}^{n}}\left[\left(\left(F_{U}, M\right)-F_{U}\right)^{2}\right]=\frac{\pi_{U}\left(1-\pi_{U}\right)}{m}-\frac{\pi_{U}\left(1-\pi_{U}\right)}{n}
$$

Error Estimation

Expected Difference Subsampling

$$
\mathbf{E}_{\mathcal{D}^{n}}\left[\left(\left(F_{U}, M\right)-F_{U}\right)^{2}\right]=\frac{\pi_{U}\left(1-\pi_{U}\right)}{m}-\frac{\pi_{U}\left(1-\pi_{U}\right)}{n}
$$

Added Noise

Assuming mean-free independent noise:

- Expected difference equals the variance.

Error Estimation

Expected Difference Subsampling

$$
\mathbf{E}_{\mathcal{D}^{n}}\left[\left(\left(F_{U}, M\right)-F_{U}\right)^{2}\right]=\frac{\pi_{U}\left(1-\pi_{U}\right)}{m}-\frac{\pi_{U}\left(1-\pi_{U}\right)}{n}
$$

Added Noise

Assuming mean-free independent noise:

- Expected difference equals the variance.

The mean square error:

$$
M S E\left(\left(F_{U}, M\right)\right)=\frac{\pi_{U}\left(1-\pi_{U}\right)}{n}+\operatorname{Var}\left(N_{M}\right)
$$

Privacy comparison under fixed error

Comparison of the amplifying effect of different mechanisms.

Fixing the Error

- Added noise error equals the variance.
- Determine the variance with respect to the selection probability.
- Calculate the privacy parameters.

Privacy comparison under fixed error

Comparison of the amplifying effect of different mechanisms.

Fixing the Error

- Added noise error equals the variance.
- Determine the variance with respect to the selection probability.
- Calculate the privacy parameters.

Subsampling with selection probability λ has the same utility as added noise with variance:

$$
\psi=\frac{\pi_{U}\left(1-\pi_{U}\right)}{\lambda n}(1-\lambda)
$$

Privacy Comparison under Fixed Error

Setting: $n=1000, \lambda=1 / \sqrt{n}$

right side $\epsilon / \sqrt{n}, \pi_{U}$ combination.

Privacy comparison under different π_{U} Values

Setting: $n=1000, \lambda=1 / \sqrt{n}$

ϵ of Laplace-Noise for $\delta=0$.

Privacy Comparison Gauss and Subsampling

Setting: $n=100, \lambda=1 / \sqrt{n}$

Further Work

Subsampling

- General privacy amplification theorem.
- Composition queries.
- Handling knowledge growth.
- Reduce dependencies between queries.
- Handling of privacy budget.

Model Extensions

- Handling knowledge growth/change.
- Composition queries.

[^0]: ${ }^{1}$ Calibrating noise to sensitivity in private data analysis. - Dwork et. al.

[^1]: ${ }^{1}$ Calibrating noise to sensitivity in private data analysis. - Dwork et. al.

[^2]: ${ }^{1}$ Calibrating noise to sensitivity in private data analysis. - Dwork et. al.

[^3]: ${ }^{2}$ Noiseless Database Privacy - Bhaskar et. al.

[^4]: ${ }^{2}$ Noiseless Database Privacy - Bhaskar et. al.

[^5]: ${ }^{2}$ Noiseless Database Privacy - Bhaskar et. al.

[^6]: ${ }^{3}$ Privacy Amplification by Subsampling: Tight Analyses via Coupling and Divergences, Balle et. al.

[^7]: ${ }^{3}$ Privacy Amplification by Subsampling: Tight Analyses via Coupling and Divergences, Balle et. al.

