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Abstract
Machine learning on sensitive data requires a secure pro-

cessing environment and a privacy-preserving publishing
method. A prominent example is the European Health Data
Space which shall contain medical patient data of all EU citi-
zens and requires privacy-preservation for published studies.

This work makes two contributions towards such a system
using differential privacy (DP) within a trusted execution en-
vironment (TEE). We introduce MammothDP: a practical and
hardened hyperparameter-free DP tree ensemble learner – a
system for understanding complex correlations in tabular data.
First, prior work results in an increase in the privacy budget
of a factor of 2 to 3 for DP hyperparameter-tuning. We experi-
mentally show that using early stopping to decide the number
of trees and fixing all other hyperparameters to reasonable
values can replace hyperparameter-tuning. We introduce a
postprocessing-based early stopping criterion that works for
any boosted tree ensemble learners, without any privacy over-
head. Second, we tackle the problem of hardening a DP tree
ensemble learner by providing a constant-time implementa-
tion. We successfully evaluated the implementation with the
side-channel leakage tool Microwalk. Moreover, we identify
subtle security challenges related to TEE rollback attacks
and explain how to avoid them. We experimentally compare
MammothDP to the state-of-the-art tree ensemble learner S-
BDT. MammothDP achieves significantly stronger results if
S-BDT abstains from any hyperparameter-tuning and compet-
itive results if S-BDT conducts a non-private hyperparameter-
tuning.

1 Introduction

The real-world deployment of theoretical differentially pri-
vate (DP) learning algorithms for highly sensitive data comes
with challenges that are neglected by the DP literature. A
prominent example of a real-world system that requires strong
protection is the European health data space (EHDS), which
aims to make medical EU-wide patient data available for

medical research studies. The EHDS requires studies on the
raw sensitive data to be conducted inside a secure process-
ing environment [19, Art 50] and then to be published in
an anonymized manner [19, Art 46(11)]. The state-of-the-
art privacy solution for publishing studies in an anonymized
manner is differential privacy (DP), and a state-of-the-art en-
forcement method of a secure processing environment are
hardware-supported trusted execution environments (TEEs),
e.g., Intel TDX [34] and SGX [20]. While a TEE protects the
data against privileged attackers (OS, hypervisor, administra-
tor) during the data processing, DP protects the data after the
processing from any curious 3rd party.

Concerning medical applications, the differentially private
method for conducting and publishing the study has to provide
strong utility-privacy tradeoffs for medium-sized data sets and
explainability. For tabular data, a common task in medical
applications, there is a successful line of research on DP tree
ensemble learners [7,41,44,53] that meets these requirements
and additionally captures complex correlations in the data.
The state-of-the-art boosted decision tree ensemble learner
S-BDT [53] has displayed strong utility-privacy tradeoffs,
even for strict privacy requirements (ε ≤ 0.1) and mid-sized
dataset sizes (roughly 48k data points).

S-BDT, however, leaves open how to find suitable hyper-
parameters, such as the number of trees, for the training in a
data-independent manner. Prior results only display the utility-
privacy tradeoff after a thorough hyperparameter-tuning that
is specific to the sensitive data set. While there are DP
hyperparameter-selection algorithms [1, 16, 25, 43, 51], these
incur a high privacy-penalty (factor 2 to 3 in terms of ε) and
deteriorate the utility-privacy tradeoff. While statically fix-
ing all hyperparameters before training [1, 35] has the risk
of being too uncertain for a good utility, we raise the ques-
tion of a sweet spot in between a privacy-penalty and static
hyperparameters that we tackle: Can a hyperparameter-free
algorithm work that adapts a hyperparameter like the num-
ber of trees during training without spending extra privacy
budget, i.e., by solely relying on post-processing?

Beyond challenges on the algorithmic side, the literature
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Figure 1: A single training example can have a mea-
surable impact on the runtime of an S-BDT model al-
though (ε = 0.1)-DP holds: here, the adversarial advantage
is TPR=0.29@FPR=0.002. We train 500 S-BDT models on
random subsets of size 3 of Abalone [48] and 500 models with
an additional data point x and plot the runtime. S-BDT uses
T = 30,000 trees of depth d = 8. The attacker chooses thresh-
old τ = 2.64 to differentiate the models with and without x.
The metric TPR@FPR=0.002 quantifies the true positive rate
(TPR) at a very low false positive rate (FPR) [14].

has shown that TEEs such as Intel’s TDX and SGX still leak
side-channel information about the programs and the data
that they process, such as timing leakage and memory ac-
cess patterns. These side-channels are aggravated, as machine
learning algorithms, such as S-BDT, conduct a series of com-
plex operations. Figure 1 shows a simple attack on S-BDT
that exploits the running time and successfully extracts infor-
mation about sensitive data, even though strong differential
privacy guarantees hold (ε = 0.1). In addition, TEE rollbacks
attacks [45, 52] can violate DP guarantees, e.g., by revert-
ing the TEEs state to a previous version and enabling more
queries than a privacy budget should allow. While rollback
attack mitigations have been proposed in several previous
works, our analysis shows that state-of-the-art solutions [36]
have limitations and preventing rollback attacks is non-trivial,
especially for randomized computations like DP algorithms
that also require side-channel protection.

Our Contribution. We introduce MammothDP, a constant-
time hyperparameter-free DP tree ensemble learner, based
on the state-of-the-art S-BDT [53]. On the one hand,
we introduce a novel overhead-free method for achieving
hyperparameter-freeness for tree ensemble learners like S-
BDT. On the other hand, we tackle the above-mentioned de-
ployment challenges.

1. Towards hyperparameter-freeness, we introduce a novel

post-processing-based early tree stopping technique for S-
BDT that achieves strong utility-privacy tradeoffs without
relying on an extra privacy budget and that might be of
independent interest. In early tree stopping, we employ a
heuristic that halts the training if we detect a possible point
of bias-freeness. Thus, this method dynamically chooses
the number of training trees. We provide a theoretical
foundation for the early stopping technique for regression
utilizing the well-known division of the mean squared
error (MSE) in a bias and a variance error with the goal
of minimizing the bias. We experimentally show that we
still perform worse than the privacy-leaky hyperparameter-
tuned S-BDT but significantly outperform S-BDT with a
statically chosen number of trees.

2. To counter timing-attacks such as Figure 1, we provide a
constant time implementation of S-BDT.1 We harden our
system against

• differing memory access patterns and control flow via
adapting S-BDT to use bitmasking and to ensure that
we always loop across all data points,

• differing runtime of instructions via adapting the C++
library libfixedtimefixedpoint [3] to S-BDT,

• differing noise sample runtimes via adapting FACCT
[69] to the Gaussian and Bernoulli noise used in S-BDT,
and

• differing data sizes within the threat model DP that lead
to a differing number of loop iterations via guaranteeing
timing privacy [56].

We validate our constant-time results using Microwalk [65]
and measure the increased computation time. Finally, we
identify subtle security challenges in the design of TEE
rollback mitigation for computations like DP algorithms
and outline a rollback defense that improves the protection
of sensitive data over state-of-the-art solutions like [36].

2 Preliminaries

2.1 Trusted Execution Environments
Various TEE technologies exist. TEEs such as Intel’s
SGX [20] and Arm TrustZone [54] are designed to isolate ap-
plications, called enclaves, from the rest of the system includ-
ing the untrusted OS. Intel’s TDX [18] and Arm CCA [42]
isolate entire VMs from any untrusted code running on the
same physical computing platform. All such TEEs have the
same high-level goal: to allow confidential workloads to be
executed on a computing platform that is trusted as little as
possible (e.g., the OS and administrator can be malicious).

Most TEEs offer two main security guarantees. The first is
data confidentiality, which is achieved by creating an isolated

1https://drive.google.com/1TW8-TDX-image
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execution environment. For example, in the case of Intel’s
SGX, the processor keeps track of the currently executing
code and allows confidential data to be accessed only when
the correct TEE application is running. The second main
security guarantee, execution integrity, is achieved through
remote attestation, which allows third parties to verify that
the expected code is running inside TEE, before providing
confidential data to it. These guarantees provide an attractive
alternative to secure computation using cryptography, as TEEs
can process confidential data efficiently in plaintext without
the need of a trusted party [55].

2.2 Differential Privacy
Differential privacy (DP) [24] is the de facto standard for prov-
able privacy. Given a mechanism that has a data-dependent
output, DP requires that the impact of single data points in the
output is limited and thus deniable. In line with S-BDT [53],
we consider unbounded DP, where the effect of adding or
removing a single instance from a dataset on the output is
analyzed.

Definition 1 (Neighboring datasets). Given two datasets X ⊆
X and X′ ⊆ X where X′ := X ∪ {x} for some x ∈ X , then
X and X′ are neighboring: X ∼x X′, or in short X ∼ X′.

Definition 2 (Differential Privacy, [24]). A randomized
mechanism M : X 7→ R satisfies (ε,δ)-DP if, for any
two neighboring datasets X ∼ X′ and any observation o:
Pr[M(X) = o] ≤ eε · Pr[M(X′) = o] + δ.

S-BDT uses a variant of DP: (α,ρ(α))-Rényi DP (RDP)
which bounds the α-th moment of the privacy loss.

Definition 3 (Rényi Divergence, [57]). Given two probability
distributions P, Q over R where P(o) denotes the density of
P at o, then the Rényi divergence of order α is defined as

Dα(P||Q) := 1
α−1 log

∫ ∞
−∞

P(o)α

Q(o)α−1 do.

Definition 4 (Rényi DP, Def. 4 in [46]). A randomized mech-
anism M : X 7→ R satisfies (α,ρ(α))-RDP if for any two
neighboring datasets X ∼ X′: Dα(M(X)||M(X′) ≤ ρ(α).

With RDP, we can mathematically describe features like
composition, filter [27], or subsampling (cf. Theorem 8). With
Corollary 5, we can convert RDP to DP. For a tight conversion,
we refer to [63, Theorem 2] which requires access to all α.

Corollary 5 (RDP to DP, Thm. 21 in [5] or Prop. 12 in [13]).
For any δ ∈ [0,1], if a mechanism is (α,ρ(α))-RDP, then it is

(ε,δ)-DP with ε = ρ(α) + log( α−1
α )− log(δ)+log(α)

α−1 .

2.3 Timing Privacy
Timing Privacy (cf. Definition 6) is a framework for ensuring
DP in the presence of timing side-channels. Intuitively, timing

private mechanisms should not leak much more information
about their input than what is already revealed by their output
distribution.

Definition 6 (Timing Privacy, special case of Definition 31
in [56]). A randomized mechanism M : X × E 7→ R× E
satisfies (1 7→ ρ(α))-Timing Privacy if, for any two neigh-
boring datasets X ∼ X′, any env,env′ ∈ E and any y ∈
supp(out(M(X,env))) ∩ supp(out(M(X′,env′))):

Dα(TM(X,env)|out(M(X,env))=y||
TM(X′,env′)|out(M(X′ ,env′))=y) ≤ ρ(α)

where TM(X,env) is the runtime of M on inputs X & runtime
environment env and out(M(X,env)) is the output of M.

2.4 Gradient Boosted Decision Trees
Gradient boosted decision trees (GBDT) [28] learn a sequence
of decision trees by iteratively correcting errors of prior trees.
Let X = {(x1,y1), . . . , (xn,yn)} ⊆ Rm ×R denote a labeled
dataset with n data points and m features. For simplicity, we
denote y as a label although a regression target applies equally.
A tree ensemble model ϕ(T) :=

[
f (1), . . . , f (T)

]
minimizes

L(T)(ϕ, X) = ∑(xi ,yi)∈X l(ϕ(T)(xi),yi) + ∑T
t=1 Ω( f (t))

where l is a twice-differentiable convex loss function, e.g.
squared error or binary cross-entropy, that measures the dif-
ference between the prediction ỹi := ϕ(T)(xi) and the label
yi, and Ω( f (t)) = 1/2λ∥V(t)∥2 is a regularization term on
the leaves vector V(t) = Leaves( f (t)).

For training each tree ft, XGBoost [17] proposes Newton
boosting, a second-order approximation of the loss function:

l(ϕ(t)(xi),yi) = l(ϕ(t−1)(xi) + f (t)(xi),yi)

≈ l(ϕ(t−1)(xi),yi) + g(t)(ϕ(t)(xi),yi) f (t)(xi)

+ 1
2 h(t)(ϕ(t)(xi),yi) f (t)

2
(xi)

with gradient g(t)(ỹi,yi) = ∂/∂ỹil(ỹi,yi) and Hessian
h(t)(ỹi,yi) = ∂2/∂ỹ2

i l(ỹi,yi).
Each tree f (t) is recursively built from a root node to the

leaves: each node splits a dataset X in a left IL and right child
IR given some split criterion s. Each child with its remaining
dataset is then the basis for the next subtree. The process
stops until a stopping criterion, e.g. the maximal tree depth, is
reached. The error correction terms of those data points that
end up in a leaf are used to construct that leaf.
Optimal leaf value. The leaves of f (t) contain the tree’s
prediction, which is derived with the Newton method as:

V(t)(ILeaf ) = − ∑(xi ,yi)∈ILeaf
g(t)(ϕ(t)(xi),yi)

∑(xi ,yi)∈ILeaf
h(t)(ϕ(t)(xi),yi)+λ

(1)

for a subset ILeaf of training data X that ended up in this leaf.
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2.5 S-BDT
S-BDT is the state-of-the-art (ε,δ)-differentially private dis-
tributed GBDT learner that shows strong potential for learning
tabular data even for smaller data sets (< 5K data points) and
vigorous privacy guarantees (ε < 0.5).

S-BDT proposes a DP initial score as the initial classifier
that outputs the mean of labels from the dataset released via
the Laplace mechanism to preserve (α,ρ(α))-Rényi DP.

A leaf is constructed using Newton boosting with all data
within a leaf (cf. Algorithm 7). The leaf value is DP approx-
imated using leaf-balanced noise [53, Theorem 16], a non-
spherical variant of the multivariate Gaussian mechanism.

S-BDT utilizes randomized splits that can yield good utility
[7, 44, 53] and limits the privacy leakage to learning leaf-
values. Random splits are constructed by randomly selecting
a feature of the dataset and a value for that feature as a split.

S-BDT enables privacy amplification by subsampling for
every iteration of tree training in the ensemble. The amplified
RDP bound of tree training is given in Theorem 7 and uses
the bound of Theorem 8.

Theorem 7 (Individual RDP bound of subsampled tree train-
ing, Theorem 19 in [53]). Let rd ∈ R+ (d = 1,2, ..., D) such
that ∑D

d=1 rd = 1. Let σ2
leaf be the unweighted variance of

the leaf Gaussian. Let aγ : N × R 7→ R denote the pri-
vacy amplification of Theorem 8 with subsampling ratio γ.
Then, for data point xi with gradient gi and Hessian hi, Algo-
rithm 6 (TrainSingleTree) satisfies (α, aγ(α,α · 2/2σ2

leaf ·(
r1·|hi |2
(h∗)2 + r2·|gi |2

(g∗)2

)
))-individual RDP.

Theorem 8 (Privacy Amplification by Subsampling, The-
orem 8 in [70]). Let M be any randomized mechanism
that obeys (α,ρ′(α))-Rényi differential privacy. Let γ be
the subsampling ratio and α ≥ 2. Let MPγ = M ◦ Pγ

and Pγ generating a Poisson subsample with subsam-
pling ratio γ. If for all neighboring datasets X ∼ X′

and all odd 3 ≤ l ≤ α, DX l (M(X)||M(X′)) ≥ 0 then
MPγ is tightly (α,ρ(α))-Rényi differentially private with
ρ(α) = 1

α−1 log
(
(1 − γ)α−1(αγ − γ + 1) + ∑α

l=2 (
α
l )(1 −

γ)α−lγle(l−1)·ρ′(l)).

S-BDT tailors individual privacy accounting via a Rényi fil-
ter [27] to BDT training which allows training for an arbitrary
amount of training rounds when filtering out in every round
the data points that have exceeded their individual privacy
budget. The individual privacy budget is updated using the
individual RDP bound (cf. Theorem 7) and compared against
the upper bound on the privacy budget.

2.6 Timing side-channel & constant-time code
Timing side-channel attacks exploit information leakage
through data-dependent timing behavior of algorithms. These
attacks exploit shared hardware features like caches [9,21,30,

31, 47, 60] and branch prediction units [2, 39], they leak infor-
mation to a malicious hypervisor using the page table [12,68]
or by precisely tracking the control flow of a TEE using single-
stepping [11, 67]. The most widely-used protection against
timing side-channels is software hardening using constant-
time programming techniques [10, 32, 38, 50]. Constant-time
programming implies using microarchitectural resources like
caches in a way that is independent of sensitive data.
Microwalk Code written in a constant-time fashion does
not necessarily guarantee security against timing attackers.
For example, subtle leakages may be missed [61, 64], or com-
piler optimizations may reintroduce vulnerabilities [22, 62].
Thus, verification of compiled binaries is needed. There has
been much research in automated constant-time verification
and many tools were proposed [29]. One of these tools is Mi-
crowalk [65, 66], a dynamic side-channel analysis framework
which has since its initial proposal matured to a stable and
practically usable tool.

Microwalk uses a dynamic approach, i.e., it analyzes a
program for a concrete set of random inputs, which are care-
fully crafted to achieve high implementation coverage. For
every such input, Microwalk collects an execution trace with
all taken branches and accessed memory addresses, which
resembles an overapproximation of the information a power-
ful side-channel attacker can acquire. The subsequent side-
channel leakage analysis follows a simple idea: If all these
traces are identical, the random inputs led to the same execu-
tion path, i.e., they are indistinguishable for a side-channel
attacker. On the other hand, if there are differences between
these traces, the attacker can distinguish the inputs and thus
learn (partial) information. Microwalk compares execution
traces and computes a leakage score, indicating how much in-
formation a side-channel attacker would get in the worst case.
To aid fixing the identified vulnerabilities, Microwalk outputs
information about the source code location and witness inputs
that trigger the vulnerability.
libfixedtimefixedpoint library The libfixedtimefixedpoint
(libftfp) library [3] is a fixed-point constant-time math library.
It uses a floating point representation with a fixed number of
bits for the integer and fractional portion and implements all
floating point operations using only integer instructions that
are constant-time.
FACCT discrete Gaussian sampling FACCT [69] is a C++
library for sampling from a discrete Gaussian. For a discrete
Gaussian Dσ with σ = k · σ0 and σ0 =

√
1/(2ln2), FACCT

uses the binary sampling method of the BLISS signature
scheme [23]: First call the base sampler to generate a sample
x ∼ D+

σ0
from a positive discrete Gaussian with standard

deviation σ0. The base sampler uses an adaptation of the
inversion method from Bos et al. [8]. The inversion method
samples x ∼ pdf f from a probability density function pdf f

by sampling u ∼ U ([0,1]) and then computing F−1
f (x) with

the inverse CDF F−1
f . This approach can be implemented in
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constant-time using a full-table access CDT sampler.
Now, generate y ∼ U ({0,1, ...,k − 1}), set z := kx +

y, t := y(y + 2kx) and perform rejection sampling on z
with rejection rate p = exp (−y(y + 2kx)/(2σ2)) using a
Bernoulli sampler. The Bernoulli sampler needs to compute
p first to generate a sample. Zhao et al. [69] propose to com-
pute a polynom P as an approximation of 2x for 0 ≤ x < 1
which is then further used to compute p (cf. [69, Figure 8]) .
Zhao et al. find a polynom P that has maximal relative error
max x| P(x)−2x

2x | < 2−45. They evalute P which has degree n
and coefficients (ai)

n
i=1 by using Horner’s rule (H(x)) with

δFP-bit precision, yielding absolute error |P(x)− H(x)| ≤
γ2n · ∑n

i=0 |ai| · |x|i, where γ2n ≈ 2n · 2−δFP . Evaluating the
polynom is possible in constant-time because the degree and
precision is fixed.

The probability of outputting an integer z = kx + y is now
proportional to exp (−z2/(2σ2)) ( [69, Theorem 3]).

3 Hyperparameter-free: Early Tree Stopping

When making differentially private machine learning algo-
rithms like S-BDT [53] robust against OS-level attackers in-
side a TEE, we encounter hyperparameter tuning. Hyperpa-
rameter tuning retrains an ML model many times to select the
hyperparameters with the highest score (e.g., RMSE, AUC,
etc.). This is a privacy issue but also an issue predominant
for OS-level attackers: since all operations and data are solely
within a TEE, no developer can easily debug, test, or evaluate
the utility of the ML algorithm before releasing the final dif-
ferentially private model. Hence, these privacy and practical
considerations demand hyperparameter-free S-BDT training.

In particular, for S-BDT there are 15 hyperparameters tuned
per ε: learning rate η, number of trees T, max tree depth d,
adaptive leaf noise ratio r1, gradient clipping bound g∗, Hes-
sian clipping bound h∗, subsampling rate γ, leaf regulariza-
tion λ, leaf regularization mode, cyclical feature interaction,
ignoring split constraints, random splits from candidates, split
refinement, initial score, and initial score clipping bound m∗.

From a privacy view, we propose a different direction
than related work which mostly chooses from a previously-
determined static set of hyperparameters. We tune our hyper-
parameter selection for S-BDT based on the hypothesis that
the number of trees is the most important hyperparameter and
suboptimal hyperparameters, such as subsampling rate γ or
max tree depth d, can frequently be corrected by choosing a
different number of trees: if each tree gets weaker, we need
more trees to reach a strong ensemble. The same goes for
the dataset: if the dataset doubles in size, we roughly reach a
similar signal-to-noise ratio if we double the number of trees.
Key idea. This hypothesis gives rise to our approach: to
achieve hyperparameter-free S-BDT training, we fix all hyper-
parameters except for the number of trees T and dynamically
select the best T based on post-processing without additional

leakage, i.e., without impact on ε. We tailor this concept to
S-BDT, where we reuse the available differentially private
fine-grained information in the form of each decision tree
of the ensemble (frequently we have hundreds to thousands
of trees per ensemble). The idea is to extract the progress
this tree makes for the ensemble from the leaves in each
tree. We check whether the leaves of a new tree progress by
looking at whether the expected regression error has a clear
positive/negative signal or the signal comes close to zero. In
the zero-case, we stop the training early. It turns out, that we
can approximate the expected regression error with only the
information available within a leaf, i.e. the noisy gradient sum.
Stopping the training early has the effect that each training
uses only as few trees as necessary ensuring the following:
First, we can save the ε that would have been spent on the re-
maining trees. Second, we can dynamically decide how many
trees we will need, based on the current training progress. In
particular, we do not need to blindly stop the training too early
or too late, both of which could lead to suboptimal utility.
Structure. In Section 3.1 we show that the leaves of a
new regression tree can be used as a close approximation of
the direction of the bias error as part of the MSE metric. In
Section 3.2 we show an algorithm that leverages this insight
for an early tree stopping.

3.1 Theoretical foundation
The mean squared error (MSE) is a common metric for
a regression predictor like a BDT. Given the true label y
and predicted label ỹ, the MSE is defined as: MSE(y, ỹ) =
1
n ∑n

i=1(yi − ỹi)
2. If each error ei := yi − ỹi is an iid ele-

ment of the distribution of errors E , we can also define the
MSE as: MSE(E) = E[E ]2. The MSE consists of a bias
part E[E ] and a variance part Var(E) due to the relation
E[E ]2 = Var(E) + (E[E ])2 for a random variable E . The
bias error – a.k.a. underfitting error – is mostly caused by a
systematic error in the learning whereas the variance error –
a.k.a. overfitting error – is mostly caused by non-deterministic
behavior of data which is not perfectly predictable. As the data
is frequently non-deterministic, i.e., consists of an unlearn-
able white noise and a learnable correlated part, a variance
error will always remain as the white noise can not be fitted.
In contrast, the bias error can vanish if the correlated part is
predicted well. Thus, a predictor that minimizes the bias is
often also a good predictor with a small MSE.

As a proxy for stopping the tree training as soon as the bias
is small, we determine the bias error difference quotient (i.e. a
discretized gradient) with a new tree, i.e., for the t-th tree we
have ∑n

i=1 e(t)i − ∑n
i=1 e(t−1)

i = 0 with e(t)i := yi − ỹ(t)i as the
error term of the t-th tree on (test) input (xi,yi). If the bias
error difference quotient reaches zero, we have an extremum
(i.e., maximum, minimum, or saddle point) for the bias error.
A saddle point is not stable and will likely vanish if we train
until the (t + 1)-th tree. A maximum, as well as a minimum,

5



indicates that the bias that is unsigned has grown/fallen during
training and now reaches a saturation point. If we assume that
we have a useful configuration and thus make progress during
training, reaching the first extremum indicates a good heuristic
that the bias might have reached a small value.

We simplify the bias error difference quotient:

∑n
i=1 e(t)i − ∑n

i=1 e(t−1)
i

= ∑n
i=1 yi − ỹ(t)i −

(
∑n

i=1 yi − ỹ(t−1)
i

)
= ∑n

i=1 ỹ(t)i − ỹ(t−1)
i

per definition: ỹ(t)i = init_score + η ∑T
t=1 ϕ(t)(xi) with

ϕ(t)(xi) as the t-th tree prediction on input xi

= η ∑n
i=1

(
∑T

t=1 ϕ(t)(xi)− ∑T
t=1 ϕ(t−1)(xi)

)
= η ∑n

i=1 ϕ(t)(xi).

The term ϕ(t)(xi) depends on the (test) data, yet we can
use an approximation that uses the fact that for the training
data, we already approximated ϕ(t)(xi) with the leaf values
V(t)(ILeaf ) (cf. Equation (1)) where ILeaf denotes the set of
data points xi that ended up in a leaf:

ϕ(t)(xi) ≈ V(t)(ILeaf ) = − ∑(xi ,yi)∈ILeaf
g(t)(ϕ(t)(xi),yi)

∑(xi ,yi)∈ILeaf
h(t)(ϕ(t)(xi),yi)+λ

.

Since for all xi ∈ ILeaf the leaf value is the same, we can
rewrite our bias error correction as

η ∑n
i=1 ϕ(t)(xi)

≈ η ∑n
i=1 V(t)(ILeaf )

= η ∑#leafs
j=1 ∑(x,y)∈ILeaf

V(t)(ILeaf )

since for regression the Hessian h(t)(ϕ(t)(xi),yi) = 1

if λ=0︷︸︸︷
= −η ∑#leafs

j=1 ∑(xi ,yi)∈ILeaf
g(t)(ϕ(t)(xi),yi)

= −η ∑n
i=1 g(t)(ϕ(t)(xi),yi).

Thus, we can conclude that if we stop the training when the
sum of the gradients is zero, the bias error difference quotient
is approximately zero, thus we probably most likely reach
a saturation point in the bias which may keep the learnable
correlated component of the MSE small. Naturally, if the
systematic "bias" error vanishes, only the variance error is left
which marks a good heuristic for an early tree-stopping point.
Moreover, the sum of the gradient within each leaf is already
differentially privately released, thus only post-processing is
applied without spending extra privacy budget.

Algorithm 1: EarlyStoppedSBDT : Early stop the
S-BDT training

Input: σ2
leaf : leaf noise scale, d : depth of trees

:(r1,r2) : noise weights for leaf value
:g∗ : gradient clipping bound
:T : number of rounds; σCI: cutoff CI

1 init0 = DPInitScore (. . . )
2 τ = σleaf · g∗ ·

√
1/2r1 ·

√
2d; // cutoff thr.

3 Σg = 0 & dir(Σg) = UNDEF
4 for t = 1 to T do // train treet
5 if dir(Σg) = POS then Σg = min(Σg,0);
6 else if dir(Σg) = NEG then Σg = max(Σg,0);
7 treet = TrainSingleTree(. . .)
8 E = (init0, tree1, ..., treet)
9 Σg += sum of noisy gradients in treet

10 if dir(Σg) = UNDEF then
11 if Σg ≤ −5 · τ then dir(Σg) = NEG;
12 if Σg ≥ 5 · τ then dir(Σg) = POS;

13 εt = RDPAccountant (. . . ,σ2
leaf, t, . . . )

14 τCI = 10εt · σCI · τ
15 if t ≥ 10 ∧ ((dir(Σg) = POS∧ Σg ≤

−τCI) ∨ (dir(Σg) = NEG∧ Σg ≥ τCI)) then
break;

16 return E

3.2 Algorithm Overview
Algorithm 1 leverages our theoretical insight from Section 3.1
for an early tree stopping heuristic where we halt as soon
as the sum of gradients across the leaves of a tree is small.
Since the gradients are noisy because of differential privacy,
halting exactly at the point where the bias error difference
quotient is very small leads to a suboptimal outcome because
the quotient can be small just by the influence of the noise.

We modify the classical S-BDT training routine (cf. Algo-
rithm 4) which is indicated in Lines 1, 4, 8 and 16 as follows:
Dynamic cutoff threshold Lines 2, 5, 6, 9 and 13 to 15
describes the dynamic cutoff threshold using the definition of
Σg: The cumulative sum of gradients across the trees after a
change of direction of a gradient sum. For instance, in the first
20 trees the gradient sum is positive, and starting at tree 21 it
is negative. Then, we take the cumulative sum of all gradients
starting from tree 21 until the cumulative sum is either smaller
or equal to the stopping criteria τCI or the cumulative sum is
larger or equal to zero again which repeats this process. This
way we ensure that we only halt if there is a clear change in
the sign of the gradient sum which indicates an extremum in
the bias error.

The cutoff threshold τCI is chosen as follows: First, we
calculate the expected standard deviation of the noise on
the gradient sum Σg. Here, τ depends on the standard de-
viation applied on each leaf σleaf · g∗ ·

√
1/2r1. As we sum
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the gradients over 2d many leaves, we also sum the noise
over this many leaves. For n = 2d normally distributed ran-
dom variables X1, . . . , Xn with said standard deviation, we
know that the sum of these random variables, i.e. ∑n

i=1 Xi,
equals to a random variable with a standard deviation of√

∑n
i=1 σ2

leaf · g∗2 · 1/2r1 = σleaf · g∗ ·
√

1/2r1 ·
√

2d =: τ.
Based on τ, we further scale the cutoff with a multiplier

of σCI similar to a confidence interval to ensure with high
certainty that the current change in direction of the gradient
sum signal was due not due to noise. We additionally find that
scaling τ with 10εt provides a dynamic aspect to the early
tree stopping which does not try to accept a constant number
of trees among all ε values, but to accept more trees for higher
ε values. At higher ε values, the training uses less noise, so
we trust the self-correction of the learning process (i.e. use a
higher cutoff τCI that is less sensitive to fluctuations) more
than for lower ε where the noise is high such that one noise
sample may destroy all learning process. We experimentally
observed that the additional dynamic aspect of early stopping
is especially useful for Abalone [48] regression dataset, while
for the classification datasets adult [6] and spambase [33] we
observed neither a clear improvement nor a clear downside.
Dynamic detection of the gradient direction Lines 3, 5,
6, 10 to 12 and 15 describes this part using the definition of
dir(Σg): the sign of how the gradient sum early progresses
during training. As the bias error is unsigned, training may
progress with a diminishing or growing bias error correction
quotient. Thus, we determine in Lines 10 to 12 in the first
iterations the sign of the gradient sum to allow to detect and
stop after a significant change in sign with threshold τCI. As
the gradient sums are noisy, we use a high (σ = 5)-confidence
interval to determine a positive gradient sum (POS) or a nega-
tive one (NEG).

4 TEE Deployment Challenges

Global differential privacy requires a trusted party as a data
aggregator, but finding a trusted entity can be difficult in many
practical scenarios. Therefore, the use of a hardware-based
Trusted Execution Environment (TEE) [59], hosted on an
untrusted server, has often been proposed as a practical de-
ployment option for distributed machine learning systems
with DP guarantees.

In short, the idea is to send training data to the TEE, which
can then run the training algorithm and store the trained model.
After training, untrusted parties, such as data analysts, can
send inference queries to the model that is only accessible
inside the TEE. The TEE can respond to queries while enforc-
ing important restrictions such as the DP algorithm’s privacy
budget. The intention is that during both the training and
query phases, the untrusted server operator, who might col-
lude with data analysts, should not learn anything about the
training data or the trained model.

TEE limitations. Despite their attractive security advan-
tages, current TEE technologies also have limitations. Perhaps
the main problem with current TEEs is that they share physi-
cal computing resources (CPU, caches) with untrusted code
running on the same platform, which in practice has led to nu-
merous side-channel attacks demonstrated against all popular
TEEs [40]. Side-channel attacks violate the data confiden-
tiality guarantee. In the case of a DP-ML system, this could
mean that the untrusted server operator can learn something
about the training data or the trained model.

Another limitation is that TEEs do not typically provide
any protected non-volatile memory. Once a protected exe-
cution is completed inside a TEE and its results need to be
stored, persistent storage must be organized outside the TEE.
Most TEE technologies support a mechanism called sealing,
which allows the TEE to encrypt data such that it can be
safely passed to the untrusted OS that can store it on disk.
Importantly, sealing protects the confidentiality of stored data
but not its freshness. When the TEE needs to obtain data
from persistent storage, the untrusted OS can provide an out-
dated version of sealed data. In case of DP algorithm, such
a rollback attack [45, 52] could, for example, trick the TEE
to answering more queries than the privacy budget should al-
low. We note that rollback attacks do not violate either of the
TEEs main security guarantees. Instead, they highlight that
data confidentiality and execution integrity are insufficient to
protect all applications.

This discussion illustrates that simply deploying DP algo-
rithms inside TEEs is often insufficient. Instead, one must
carefully address the TEEs’ main limitations such as side
channels and rollback attacks. Unfortunately, majority of DP
research literature that mention TEEs as deployment option
focus on algorithmic challenges and improvements, and ig-
nores such deployment aspects, which are, in fact, crucial for
DP guarantees.
Prior work and our focus. A recent work called Ele-
phantDP [36] is one of the few research papers to consider
TEE deployment challenges of DP algorithms. While we con-
sider this work a great starting point and a solid research
contribution, we also observe that it has limitations. For one,
the ElephantDP paper focuses on protecting DP guarantees
during the query phase, but it does not consider the training of
ML algorithms which presents another significant attack sur-
face. The second limitation is that this work does not consider
side-channels, which are perhaps the main security problem
of current TEEs. Moreover, our analysis shows that the roll-
back protection mechanism proposed in ElephantDP creates
an unrestricted oracle for side-channel attacks, thus enlarging
the above two problems.

In the following two sections, we consider the safe de-
ployment of TEE-based DP algorithms more broadly. This
includes addressing security challenges that arise both during
the training and deployment phases of ML system. It also
involves designing and implementing protections that address
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side-channel leakages and rollback attacks, the two main se-
curity issues of current TEEs. In particular, we show that the
DP algorithm presented in this paper can be implemented
using constant-time programming practices to address side-
channel leakages (both during the training and query phase).
We also outline an improved rollback protection approach
that follows a prior work called Memoir [52] and additionally
turns randomized DP algorithms into deterministic executions
to prevent side channel leakage.

5 Implementing S-BDT on Trusted Hardware

Vanilla S-BDT [53] is unprotected from leakage through tim-
ing side-channels and can potentially expose sensitive at-
tributes of its training data to an untrusted entity that is able
to track runtime behavior of S-BDT’s execution (e.g. execu-
tion time, branching behavior). A simple example how a DP
attacker can exploit this leakage is displayed in Figure 1.

In the following sections we identify the reasons for these
leakages and describe how we fix them in our constant-time
adaptation of S-BDT. The complete pseudocode for constant-
time S-BDT is in Appendix B. In the experimental section
(cf. Section 7.3) we validate our constant-time implementa-
tion using Microwalk [65]. We port our implementation of
constant-time S-BDT with early tree stopping (cf. Section 3)
to an Intel TDX virtual machine [34] (cf. Section 5.1).

Data-dependent memory access A program that has data-
dependent memory access patterns may leak the patterns and
thus parts of the data through a cache that is shared with an
untrusted entity [9,21,30,31,47,60]. When DP approximating
a leaf value (cf. Algorithm 7 in Line 1 and Line 3), vanilla
S-BDT only sums up those data points that are in a specific
leaf, allowing the DP adversary to infer sensitive attributes
based on the specific leaf a data point ends up in. In Algo-
rithm 4 vanilla S-BDT only updates the individual privacy
budgets of data points that are not filtered out yet, leaking the
specific data points that are still active. And in Algorithm 11
vanilla S-BDT computes gradients and Hessians only for the
data points of the current subsample, effectively removing
privacy amplification by subsampling because the subsample
can be exposed to the DP adversary. In our constant-time
version, we always iterate over all data points, filtering them
with bitmasks. We use one bitmask indicating whether a data
point is in the subsample of the current training round, one
bitmask indicating data points that are still active after individ-
ual privacy filtering, and one bitmask for each leaf indicating
the data points that end up in that leaf.

Data-dependent control flow Similar issues to data-
dependent memory access arise when the control flow of
a program is data-dependent. Powerful attacks like single-
stepping allow a malicious hypervisor to precisely track the

control flow of a TEE [11, 67] and thus infer sensitive data.
When computing the prediction of a data point on a tree,

vanilla S-BDT directly evaluates only the path leading from
the tree root to the leaf that the data point ends up in. This con-
trol flow can leak the leaf, revealing sensitive attributes of that
data point. In our fixed version of Algorithm 10, the entire tree
always gets traversed in the same order, effectively removing
data-dependent control flow. The correct leaf value is then
returned via a constant-time selection based on the sensitive
attribute, replacing branching on the sensitive attribute which
is not constant-time. The selection algorithm is displayed in
Algorithm 2 and can be made constant-time by replacing all
arithmetic operations with their equivalent operations in the
libftfp library [3]. In Algorithm 7 the indicator functions are
also replaced with this constant-time selection.

Algorithm 2: Constant-time selection
Input: b: boolean value, u,v two values

1 return b · u + (1 − b) · v

Data-dependent runtime of instructions Instructions like
addition and multiplication can leak the value of sensitive
data. For example, multiplying two numbers on a Core i7
processor will take 4 clock cycles, but when the operands
are subnormal, i.e., hold values close to zero, the same multi-
plication can take over 200 clock cycles [3], a difference in
runtime that gets further amplified by repeated computation
inside of a loop. A DP adversary who carefully chooses their
input can thus leak the value of sensitive data through the
runtime of such instructions. To counter this problem, we re-
place all operations that use sensitive data, i.e., computing the
individual privacy budget ρ

(i)
t (cf. Algorithm 4), computing

the sum over labels and adding the noise in the DP initial
score (cf. Algorithm 5), computing the sums over gradients
and Hessians and adding the noise when DP approximating a
leaf value (cf. Algorithm 7), computing the prediction of the
ensemble (cf. Algorithm 9 and Algorithm 10) and computing
gradients and Hessians (cf. Algorithm 11), with their equiva-
lent instructions from the libftfp library [3], which all run in
constant-time and independent of the operand’s values.

Leaking noise samples Leaking noise samples that are
sampled from the Gaussians in the DP initial score (cf. Al-
gorithm 5) and for DP approximating a leaf value (cf. Al-
gorithm 7) breaks DP because an adversary observing the
samples can use them to denoise the DP approximated re-
leases, e.g., in the DP initial score (cf. Line 9) if the adversary
knows the noise from Gaussian was s = 0.123 and the DP
approximated value of Mpriv = 1.123, then the nonprivate
value must be M = 1.0. Typical Gaussian samplers are not
constant-time and thus suffer from side-channel vulnerabili-
ties. We utilize FACCT [69], a constant-time implementation
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Algorithm 3: Constant-time S-BDT with randomized
input length

Input: D: data set
1 l̃ = input_len +N (0,1/εinput)

2 Run constant-time S-BDT with input length l̃
3 Write back resulting ensemble to output.

of a discrete Gaussian Dσ. We set σ = 2048 to be large so
that when scaling the resulting discrete distribution by σ, i.e.
Dσ/σ we obtain a reasonable approximation of a continuous
standard normal N (0,1).

S-BDT uses a Bernoulli distribution to generate a Poisson
subsample (cf. Algorithm 12) for privacy amplification. Typi-
cal Bernoulli samplers are not constant-time and potentially
leak what samples end up in a subsample, breaking the pri-
vacy amplification because the subsample is then known to
the adversary. We replace the Bernoulli distribution with the
constant-time version that is a subroutine of FACCT [69].

Leaking input length In unbounded DP, where the adver-
sary distinguishes between two different inputs that differ in
their length by one element, exposing the length of the input
breaks DP guarantees. Similarly, vanilla S-BDT traverses the
input multiple times during its execution, opening the possi-
bility for leaking the input length. We remedy this problem
by first releasing the input length l via the Gaussian mecha-
nism l̃ := l +N (0,1/εinput) and then truncating the input or
padding it with placeholder data to have the length match the
DP approximated l̃ (cf. Algorithm 3). In our constant-time
version, S-BDT traverses the entire data set in the loop of
Algorithm 4, or in the sums in Algorithm 5 and Algorithm 7
so the adversary can only learn l̃ from observing the runtime,
which is fine for DP.

In practice, we assume that the initial padding or truncation
of data has been performed by the data owner and prior to run-
ning S-BDT, so S-BDT will only leak the DP approximated
input length when reading the input file.

Timing Privacy We prove Timing Privacy [56] in an ideal-
ized RAM model to validate our construction of Algorithm 3.
Timing Privacy demands the randomized running time of
a mechanism not to leak much more than what is already
revealed by the output distribution (cf. Section 2.3).

We assume that all hyperparameters are baked into Algo-
rithm 3 and are not part of the input. We note that the DP
approximated input length l̃ (cf. Algorithm 3) can be reused
instead of being recomputed for the DP initial score (cf. Algo-
rithm 5). We use the ω-bit Word RAM model’s oracle RAND
to sample uniform noise. We extend the model by oracles
for selection between two values u,v based on a boolean se-
lector b (cf. Algorithm 2), logarithm, binomial coefficient,
exponentiation, Bernoulli sampling and Gaussian sampling.

We assume all oracles to perform in a single time step, but
note that this assumption is met in practice by making all
oracles constant-time using the libftfp [3] and FACCT [69]
libraries. We also assume that the sequence of memory cells
is large enough to store l̃ data points and that reading from
uninitialized memory is safe so we can read placeholder data
points from uninitialized memory after the actual data points.
We assume that one operation (e.g., calling an oracle or per-
forming a multiplication) can be done per time step. Under
these assumptions, we show the following result.

Theorem 9. Algorithm 3 satisfies (1 7→ ρinput(α))-Timing
Privacy.

Proof. Let X ∼ X′ be two neighboring data sets and y ∈ R
an arbitrary output. Let Tmax be the number of trees, d the
depth of trees, αmax · σmax the number of iterations performed
in Algorithm 8. Let l̃ := |X| + N (0,1/εinput) be the DP
approximated input length of input X.

By direct analysis (cf. Appendix C for details) we get a
constant amount of operations independent of input length

K = 2 ·
(

4 + 8αmaxσmax − Tmax + 5 · 2dTmax

)
and a constant amount of iterations for each data point in the
input

k = 2 + (35+9·2d+22αmax)Tmax
2 + (1+3·2d)T2

max
2

Let M be the mechanism of Algorithm 3. We compute the
Timing Privacy guarantee of M:

Dα(TM(X,env)|out(M(X,env))=y||
TM(X′,env′)|out(M(X,env))=y)

= Dα(N (|X|+ K,k2 · 1/εinput)||
N (|X′|+ K,k2 · 1/εinput))

= Dα(N (0,k2 · 1/εinput)||N (1,k2 · 1/εinput))

Using [46, Proposition 7]

≤ α/(2 · k2 · 1/εinput) =: ρinput(α)

5.1 Porting MammothDP to Intel TDX

We port our implementation of constant-time S-BDT with
early tree stopping (cf. Section 3) to an Intel TDX virtual
machine [34]. We run it on a TDX-enabled Intel Xeon Gold
6526Y Emerald Rapids processor. A Ubuntu 24.10 image that
contains a compiled binary of MammothDP is available at
https://drive.google.com/1TW8-TDX-image.
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6 Rollback Protection

The execution in modern TEEs leverages volatile memory
locations such as registers and cache inside the CPU package.
Once the execution is complete, such memory locations will
be erased to ensure data confidentiality. Any persistent storage
needed must be organized outside the TEE. To support this,
most TEE architectures support a storage mechanism called
sealing [20]. This allows the TEE application to encrypt data
using authenticated encryption, such that only the same TEE
application that sealed can later decrypt (unseal) it and verify
its authenticity. In the context of a differentially-private ML
system, the TEE could, for example, seal the computed model
after its training. The TEE application should also update the
privacy budget for every answered query and store the latest
budget value to disk using sealing.

The sealing mechanism provided by current TEEs is sus-
ceptible rollbacks (sometimes also called rewinds) [45, 52].
When the TEE application needs to load its latest state (e.g.,
after being restarted by the OS) it can ask the OS to serve
the latest sealed state from disk. Instead of serving the lat-
est sealed data, the OS can provide a previous version of
sealed data to the TEE. Towards the TEE application every-
thing looks correct, as the sealing is cryptographically correct
(authenticated using a valid key), but the rollback attack ef-
fectively rewinds the TEE’s state to a previous privacy budget
value and thus enables violation of DP guarantees.

Rollback protection requirements. To address rollback
attacks, some form of trusted, non-volatile memory is needed.
In research literature such trusted memory that resides out-
side the TEE is typically called State Continuity Module
(SCM) [52]. One possible instantiation is a trusted hardware
element such as a TPM chip which is equipped with non-
volatile DRAM. The main downside of hardware-based SCM
is that non-volatile memory writes are typically slow and the
NVRAM memory will wear out with each write [45,52]. This
makes applications that require very frequent SCM updates
infeasible using hardware SCMs like the TPM chip.

Another option is to leverage a distributed state-keeping
system as the SCM. For example, several research papers have
explored the idea of a distributed system created by multiple
SGX enclaves [4,45,49]. Such SCM instantiations do not have
similar update frequency restrictions, but they do increase
the overall system complexity and introduce additional trust
assumptions (e.g., the setup phase typically requires a trusted
entity that defines which nodes to enroll to the distributed
system).

A good rollback protection system should support two prop-
erties. The first is safety, which means that the TEE applica-
tion should only load the latest version of its sealed data. The
second is liveness, which means that even if the TEE suddenly
crashes, or the underlying computing platform loses power,
the TEE can continue its operation after a restart.

Prior work. A recent work called ElephantDP [36] pro-
poses a rollback protection mechanism for differentially-
private ML systems. The goal of this solution is to ensure that
a privacy budget managed by the TEE is not rolled back to a
previous value.

ElephantDP achieves this by first executing the DP algo-
rithm and processing the inference query that is received from
an untrusted data analyst, then saving the TEE application’s
state (including the updated privacy budget and the response
to the query) on disk, and finally updating the SCM with the
hash of the TEE application’s state. Assume the TEE crashes
after updating the SCM, but potentially before being able to
send the response to the analyst. The TEE application can be
restarted and the system ensures that only the same response
will be outputted. The paper argues that such TEE restarts
and re-executions do not provide any advantage to the DP
adversary.

However, this approach provides an advantage to a side-
channel adversary, since it creates an unrestricted execution
oracle that can be used to launch side-channel attacks. To
illustrate this, let us consider the following example. The
untrusted data analyst sends a query to the TEE application.
The colluding OS aborts the execution of the TEE after it
has processed the query (i.e., executed the DP algorithm with
the adversary-chosen input), but before the local storage or
the SCM is updated. Then these two steps can be repeated
with a new query value. This means that ElephantDP prevents
the enclave from returning a different output, but it will not
prevent the TEE application re-execution itself. This allows a
side-channel adversary, such as the untrusted OS colluding
with the data analyst, to execute the TEE unlimited number
of times with freely chosen inputs.

Side-channel leakage can be addressed using defensive
programming techniques, as we have done in this paper. How-
ever, ensuring that the compiled code exhibits constant-time
properties is challenging. Even if one executable is verified
to behave in constant-time manner, a different compiler, com-
piler settings, or computing architecture may introduce subtle
changes to the executable and violate constant-time proper-
ties [58]. In addition, writing code following the constant-time
paradigm can be tedious and slow. Not every real-life project
may afford such time investment. Ideally, the rollback protec-
tion mechanism should be free of such side-channel oracles,
if it can be done without sacrificing safety or liveness.

Eliminating side channel oracle beyond timing-leakage.
Next, we outline that this is possible by using a previous work
called Memoir [52] as a starting point. For each received
query, the TEE should first update the SCM with a hash of
its current state. The TEE application’s state should include
a history of all previous inputs (queries). Once the SCM is
updated, the TEE can execute the DP algorithm with the
received query input and provide an output response to the
data analyst. If the TEE crashes after the SCM is updated, but
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potentially before the response is sent to the analyst, the TEE
can be re-executed using the same input and its previous state.
During such re-execution the TEE can verify, by consulting
the SCM, that the same input is provided or abort its execution
otherwise.

This basic approach, proposed in the Memoir paper, ensures
that such TEE re-executions after a crash are only possible
with the same input. Assuming that the executed algorithm is
deterministic, the side-channel adversary learns nothing new
from the repeated execution. However, DP algorithms are
randomized, and therefore this approach alone is not sufficient
to eliminate the side-channel oracle. The adversary (untrusted
OS) could re-execute the randomized DP algorithm with the
same input many times and observe a different side-channel
trace for each execution.

Fortunately, this remaining problem can be solve easily in
the context of DP ML systems. The data owners, who provi-
sion training data to the TEE, can each provide a randomness
seed before sending any training data. The TEE application
can combine such received seeds on its sealed state. The TEE
application can be configured to only accept training data
from a data owner if it has already contributed a random-
ness seed that is included to TEE application’s state. During
training and query processing, the TEE application can then
create the needed pseudo-randomness using PRNG and the
combined seed (e.g., all received seeds are concatenated and
hashed together). This approach will make the TEE’s execu-
tion deterministic and eliminate the side-channel oracle from
the rollback protection mechanism.

This discussion illustrates that the two well-known limita-
tions of modern TEEs, side-channels and rollback attacks, are
actually connected problems. And careful system deployment
consideration is needed to address both problems simultane-
ously.

7 Evaluation

Sensitive Datasets. We use the three datasets that were
used in the S-BDT evaluation [53] for our experiments:
Abalone, Adult and Spambase. Abalone [48] is a regression
dataset containing 4,177 data points. Given eight numerical
attributes, e.g. sex, length, and diameter of an abalone, the task
is to predict its age. Adult [6] is a binary classification dataset
with more than 48,000 data points. Given 14 attributes, e.g.
age, sex, and occupation, the task is to determine whether a
person earns over 50,000$ per year. Spambase [33] is a binary
classification dataset containing 4,601 data points. Given 57
numerical attributes, e.g. frequencies of words and symbols
in a mail, the task is to determine whether that mail is spam.
Experimental Setup. We set δ = 1.5 · 10−7 for Abalone
and δ = 3 · 10−8 for Adult and Spambase. Tests were
run with an Intel Xeon Platinum 8168 2.7 GHz CPU and
32GB of RAM. The code of MammothDP is available at
https://anonymous.4open.sciencer/mammothdp.

7.1 Early Stopping

In Figure 2, we compare S-BDT with hyperparameter-
free early stopping (cf. Algorithm 1 on σCI = 3) to
hyperparameter-free S-BDT and as a reference, we include
the privacy-leaky hyperparameter tuned S-BDT [53, Figure
3].

We observe that hyperparameter-free early stopped S-
BDT significantly outperforms hyperparameter-free S-BDT
on all three datasets. We reach a less but comparable util-
ity when comparing early stopped S-BDT to the reference
hyperparameter-tuned S-BDT. In the Appendix, we show in
Figure 4 that this gap closes the smaller we set the maximal
number of allowed trees. Moreover, Figure 2 also shows that
early stopped S-BDT mostly selects a similar number of trees
to the HP-tuned variant which validates our early stopping
heuristic.
Static Hyperparameters. For both hyperparameter-free
variants, we have to choose a static set of reasonable hyper-
parameters. We used a compromise of the best-performing
hyperparameters in HP-tuned S-BDT on abalone, adult, and
spambase. For deployment, we recommend using publically
available datasets. The chosen parameters are the following:
learning rate η = 0.1, maximal number of trees T = 6,000,
max tree depth d = 2, adaptive leaf noise ratio r1 = 0.4, gradi-
ent clipping bound g∗ = 0.2, Hessian clipping bound h∗ = 0.2,
subsampling rate γ = 0.2, leaf regularization λ = 15, leaf
regularization mode ADD, enabled cyclical feature interaction,
enabled ignoring the split constraints, enabled random splits
from candidates, disabled split refinement, activated initial
score solely for regression datasets, and initial score clipping
bound m∗ = 0.5.

Additionally, we performed some feature pre-processing
like rescaling some attributes and categorizing the attributes
into categorical or numerical ones based on the meta-data
description of a dataset. For comparability, we used the same
numerical feature range as S-BDT: for abalone we have a
range of 0 . . . 0.5, for adult of 0 . . . 100, and for spambase of
0 . . . 1. We recommend a data-independent numerical feature
range for deployment.

7.2 Privacy - Utility tradeoffs

We compare vanilla S-BDT with our constant-time S-BDT
using the best perfoming sets of hyperparameters reported for
vanilla S-BDT [53]. For the non-private baselines we report
performance of the XGBoost [17] algorithm implemented
in the S-BDT framework and denote xgboost for reporting
the utility when selecting the optimal, data-dependent split
and xgboost random splits when selecting splits uniformly at
random from the split value range. Our findings are displayed
in Figure 3. On Spambase and Adult, vanilla and constant-
time S-BDT perform equally. On Abalone we observe a very
small decrease in RMSE for constant-time S-BDT. This is
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Figure 2: S-BDT with privacy-leaky hyperparameter-tuning (green), with statically chosen hyperparameters (orange), or with
early stopping (blue). We plot the privacy-utility tradeoff (top) and the selected number of trees (bottom). Evaluated with
10-repeated 5-fold cross-validation and an upper bound of 6,000 trees.

Dataset Setting Time cost

Abalone Vanilla S-BDT 1.9 s

Abalone Constant Time S-BDT 48.0 s

Adult Vanilla S-BDT 3.0 s

Adult Constant Time S-BDT 58.4 s

Spambase Vanilla S-BDT 2.8 s

Spambase Constant Time S-BDT 45.3 s

Table 1: Time cost of Vanilla S-BDT and Constant Time S-
BDT. We train T = 100 rounds with tree depth d = 6.

due to replacing the Laplace mechanism in the DP initial
score from vanilla S-BDT with the Gaussian mechanism (cf.
Algorithm 5): While the Laplace mechanism is (ε,0)-DP, the
Gaussian mechanism is (ε,δ)-DP. We use the same δ that we
use for the Gaussian mechanism in DP approximating the
leaf (cf. Algorithm 7) for the two invocations of the Gaussian
mechanism in the DP initial score (cf. Algorithm 5) which
increases the overall δ from δ = 3 · 10−8 to δ = 9 · 10−8. We
also increase the privacy budget εds used in the DP initial
score (cf. Algorithm 5) from εds = 0.005 to εds = 0.025.

7.3 Constant-Time Evaluation

To verify that our compiled implementation is indeed constant-
time, we analyzed it with Microwalk. For that, we divided
data-dependent parts of our implementation into the indepen-
dent components DP Initial Score, computing and updating
the individual privacy budgets, computing gradients and Hes-
sians, forming a leaf node and adding Gaussian noise with
fixed randomness, generating the bitmask that notes which
data point ends up in which leaf of a tree and prediction of
the ensemble. For each component, we generated 100 random
test inputs. These test inputs are loaded by thin wrapper func-
tions, which transform the test inputs into the correct format
(while maintaining uniformity) and then call the target com-
ponent. We embed the wrapper functions into Microwalk’s
new analysis template [26], which automates communication
with Microwalk and loading and executing the test inputs. The
resulting analysis workflow is fully automatic, which makes
re-verifying the full implementation after changes straightfor-
ward.

Microwalk successfully verifies all components, without
reporting any leakages. The (single-threaded) analysis of
all components takes 76 seconds in total (average 7.6 sec-
onds per component), at a memory consumption of at most
300 MB. We verified that the analysis covered all exe-
cuted S-BDT and libftfp code. Increasing the number of
test cases does not lead to higher coverage. We conclude
that our S-BDT implementation exhibits no data-dependent
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Figure 3: Comparison of utility-privacy tradeoff of vanilla S-BDT and constant-time S-BDT. Regression error (RMSE) (Abalone)
and AUC (Adult and Spambase) vs. privacy budget ε ((b) and (c) in log-scale). We set δ = 1.5 · 10−7 for Abalone and
δ = 3 · 10−8 for Adult and Spambase. Evaluated with 20-repeated 5-fold cross-validation. The transparent area is the standard
error.

control flow or memory accesses, making it robust against
system-level attackers. Code of our evaluation is available at
https://anonymous.4open.science/r/mwsbdt.

Runtime overhead We investigate the time cost of vanilla
S-BDT and our constant-time S-BDT. The constant-time im-
plementation increases runtime due to the fixed-time instruc-
tions taking more clock cycles to run [3, Figure 14] and due
to all loops in the constant-time S-BDT always traversing the
entire data set instead of only a much smaller subsample or a
much smaller collection of data points inside a specific leaf.
We observe an overhead of factor 15 to 25 (cf. Table 1).

8 Discussion & Limitations

The early stopping method requires a sufficiently large upper
bound for the number of trees (we chose 6,000) to ensure that
the tree learner has enough expressivity for the learning task.
However, in some cases, randomness leads the early stopping
astray and no stopping occurs, leading to weak performance
and high privacy leakage. A comparison of the Spambase
(Figure 3c) and Abalone (Figure 3a) which are of similar
dataset size results show that not all data sets work equally
well. To understand, further research into this early stopping
method is needed.

The constant-time implementation has a well-known sig-
nificant efficiency overhead, which in some applications
might be prohibitively large. As S-BDT is very efficient, this
efficiency-overhead was not a problem in our experiments,
though. In practice, it might be too costly to devise a constant-
time version of existing methods and harden the TEE.

9 Related Work

The related work on roll-back attacks on TEEs is described
in Section 4.

Hardening ML algorithms for trusted hardware Prior
works harden various machine learning algorithms against
timing side-channels for trusted hardware. Law et al. [38]
harden the XGBoost [17] algorithm, Ohrimenko et al. [50]
propose constant-time implementations for various ML algo-
rithms, including decision trees or support vector machines.
Hyperparameter-free DP-ML Current work on
hyperparameter-free differentially private machine learning
algorithms mainly focuses on finding the best hyperparameter
from a previously specified set of hyperparameter choices. In
that, there are three approaches for hyperparameter-freeness:
either via heuristics [1, 35], via separating the data in disjoint
sets [15, 37], or via spending extra privacy [1, 16, 43, 51].
Spending extra privacy budget means more noise is used
in training when the overall privacy budget is fixed which
deteriorates utility. Dividing the data set into disjoint sets
implies using less data in training which also deteriorates
utility. In this work, we go a step beyond heuristic-based
solutions by adaptively tuning the important hyperparameter
of the number of trees during training using only the
differentially private output of the model.

10 Conclusion

We introduced a novel hyperparameter-freeness method, via
early stopping, that does not incur any privacy-overhead. To-
wards a practical deployment of ML algorithms in EHDS, we
have introduced a TEE-hardened practical DP tree ensemble
learner for which the side-channel analysis tool Microwalk
did not find side-channel leakage. Our experiments show that
despite the efficiency overhead of the constant-time imple-
mentation, the running time is acceptable. Our experiments
further show that the hyperparameter-freeness method outper-
forms non-hyperparameter-tuned DP tree ensemble learners,
and is comparable to hyperparameter-tuned DP tree ensemble
learners, for which the hyperparameter-tuning is non-DP.
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11 Ethics considerations

This work solely works on benchmark data; so, we do not see
any cause for ethical concerns.

12 Compliance with the open science policy

In this work we share the source code of our implementation,
the source code of our evaluation and a compiled binary inside
an Intel TDX virtual machine.

References

[1] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan
McMahan, Ilya Mironov, Kunal Talwar, and Li Zhang.
Deep learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’16, page 308–318,
New York, NY, USA, 2016. Association for Computing
Machinery.

[2] Onur Aciiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert.
On the power of simple branch prediction analysis. In
Proceedings of the 2nd ACM Symposium on Information,
Computer and Communications Security, ASIACCS ’07,
page 312–320, New York, NY, USA, 2007. Association
for Computing Machinery.

[3] Marc Andrysco, David Kohlbrenner, Keaton Mowery,
Ranjit Jhala, Sorin Lerner, and Hovav Shacham. On
subnormal floating point and abnormal timing. In 2015
IEEE Symposium on Security and Privacy, pages 623–
639, 2015.

[4] Sebastian Angel, Aditya Basu, Weidong Cui, Trent
Jaeger, Stella Lau, Srinath Setty, and Sudheesh Singana-
malla. Nimble: rollback protection for confidential cloud
services. In 17th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 23), pages
193–208, 2023.

[5] Borja Balle, Gilles Barthe, Marco Gaboardi, Justin Hsu,
and Tetsuya Sato. Hypothesis testing interpretations and
renyi differential privacy. In Proceedings of the Twenty
Third International Conference on Artificial Intelligence
and Statistics, volume 108 of Proceedings of Machine
Learning Research, pages 2496–2506. PMLR, 2020.

[6] Barry Becker and Ronny Kohavi. Adult. UCI Machine
Learning Repository, 1996.

[7] Mariusz Bojarski, Anna Choromanska, Krzysztof Choro-
manski, and Yann LeCun. Differentially- and non-
differentially-private random decision trees. preprint
arXiv:1410.6973, 2014.

[8] Joppe W. Bos, Craig Costello, Michael Naehrig, and
Douglas Stebila. Post-quantum key exchange for the tls
protocol from the ring learning with errors problem. In
2015 IEEE Symposium on Security and Privacy, pages
553–570, 2015.

[9] Ferdinand Brasser, Urs Müller, Alexandra Dmitrienko,
Kari Kostiainen, Srdjan Capkun, and Ahmad-Reza
Sadeghi. Software grand exposure: Sgx cache attacks
are practical. In Proceedings of the 11th USENIX Con-
ference on Offensive Technologies, WOOT’17, page 11,
USA, 2017. USENIX Association.

[10] Ernie Brickell, Gary Graunke, and Jean-Pierre Seifert.
Mitigating cache-timing based side-channels in aes and
rsa software implementations. In Conference 2006 ses-
sion DEV-203. RSA, 2006.

[11] Jo Van Bulck, Frank Piessens, and Raoul Strackx. Neme-
sis: Studying microarchitectural timing leaks in rudi-
mentary CPU interrupt logic. In David Lie, Moham-
mad Mannan, Michael Backes, and XiaoFeng Wang,
editors, Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, CCS
2018, Toronto, ON, Canada, October 15-19, 2018, pages
178–195. ACM, 2018.

[12] Jo Van Bulck, Nico Weichbrodt, Rüdiger Kapitza, Frank
Piessens, and Raoul Strackx. Telling your secrets with-
out page faults: Stealthy page Table-Based attacks on en-
claved execution. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1041–1056, Vancouver,
BC, August 2017. USENIX Association.

[13] Clément L Canonne, Gautam Kamath, and Thomas
Steinke. The discrete gaussian for differential privacy.
In Advances in Neural Information Processing Systems,
volume 33, pages 15676–15688. Curran Associates, Inc.,
2020.

[14] Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song,
Andreas Terzis, and Florian Tramèr. Membership infer-
ence attacks from first principles. In 2022 IEEE Sympo-
sium on Security and Privacy (SP), pages 1897–1914,
2022.

[15] Kamalika Chaudhuri, Claire Monteleoni, and Anand D.
Sarwate. Differentially private empirical risk minimiza-
tion. J. Mach. Learn. Res., 12:1069–1109, 2011.

[16] Kamalika Chaudhuri and Staal A Vinterbo. A stability-
based validation procedure for differentially private ma-
chine learning. In Advances in Neural Information Pro-
cessing Systems, volume 26. Curran Associates, Inc.,
2013.

14



[17] Tianqi Chen and Carlos Guestrin. Xgboost: A scal-
able tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, page 785–794.
Association for Computing Machinery, 2016.

[18] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez,
Salman Ahmed, Zhongshu Gu, Hani Jamjoom, Hubertus
Franke, and James Bottomley. Intel tdx demystified: A
top-down approach. ACM Computing Surveys, 56(9):1–
33, 2024.

[19] European Commission. Proposal for a regulation of the
european parliament and of the council on the european
health data space, com(2022) 197 final, 2022.

[20] Victor Costan and Srinivas Devadas. Intel sgx explained.
Cryptology ePrint Archive, Paper 2016/086, 2016.

[21] Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth,
Daniel Genkin, Nadia Heninger, Ahmad Moghimi, and
Yuval Yarom. Cachequote: Efficiently recovering long-
term secrets of sgx epid via cache attacks. Transactions
on Cryptographic Hardware and Embedded Systems,
2018, Issue 2:171–191, 2018.

[22] Lesly-Ann Daniel, Sébastien Bardin, and Tamara Rezk.
Binsec/rel: Symbolic binary analyzer for security
with applications to constant-time and secret-erasure.
26(2):11:1–11:42.

[23] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim
Lyubashevsky. Lattice signatures and bimodal gaussians.
Cryptology ePrint Archive, Paper 2013/383, 2013.

[24] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and
Adam D. Smith. Calibrating noise to sensitivity in
private data analysis. In Theory of Cryptography,
TCC 2006, volume 3876 of Lecture Notes in Computer
Science, pages 265–284. Springer, Berlin, Heidelberg,
2006.

[25] Cynthia Dwork, Moni Naor, Omer Reingold, Guy N.
Rothblum, and Salil P. Vadhan. On the complexity of
differentially private data release: efficient algorithms
and hardness results. In Proceedings of the 41st An-
nual ACM Symposium on Theory of Computing, (STOC),
pages 381–390. ACM, 2009.

[26] Iliana Fayolle, Jan Wichelmann, Anja Köhl, Walter
Rudametkin, Thomas Eisenbarth, and Clémentine Mau-
rice. Semi-automated and easily interpretable side-
channel analysis for modern javascript. In Cryptology
and Network Security - 23rd International Conference,
CANS 2024, Cambridge, UK, September 24-27, 2024,
Proceedings, Part II, volume 14906 of Lecture Notes in
Computer Science, pages 25–46. Springer, 2024.

[27] Vitaly Feldman and Tijana Zrnic. Individual privacy
accounting via a rényi filter. In Advances in Neural In-
formation Processing Systems, volume 34, pages 28080–
28091. Curran Associates, Inc., 2021.

[28] Jerome H Friedman. Greedy function approximation: a
gradient boosting machine. Annals of statistics, pages
1189–1232, 2001.

[29] Antoine Geimer, Mathéo Vergnolle, Frédéric Recoules,
Lesly-Ann Daniel, Sébastien Bardin, and Clémentine
Maurice. A systematic evaluation of automated tools for
side-channel vulnerabilities detection in cryptographic
libraries. In 2023 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), pages 1690–
1704. ACM.

[30] Johannes Götzfried, Moritz Eckert, Sebastian Schinzel,
and Tilo Müller. Cache attacks on intel sgx. In Pro-
ceedings of the 10th European Workshop on Systems
Security, EuroSec’17, New York, NY, USA, 2017. As-
sociation for Computing Machinery.

[31] Marcus Hähnel, Weidong Cui, and Marcus Peinado.
High-Resolution side channels for untrusted operating
systems. In 2017 USENIX Annual Technical Confer-
ence (USENIX ATC 17), pages 299–312, Santa Clara,
CA, July 2017. USENIX Association.

[32] Mike Hamburg. Accelerating aes with vector permute
instructions. In Cryptographic Hardware and Embedded
Systems - CHES 2009, pages 18–32. Springer Berlin
Heidelberg, 2009.

[33] Mark Hopkins, Erik Reeber, George Forman, and Jaap
Suermondt. Spambase. UCI Machine Learning Reposi-
tory, 1999.

[34] Intel. Intel tdx. White Paper, 2023. [Accessed: 2025-
01-02].

[35] Roger Iyengar, Joseph P. Near, Dawn Song, Om Thakkar,
Abhradeep Thakurta, and Lun Wang. Towards practical
differentially private convex optimization. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 299–
316, 2019.

[36] Jiankai Jin, Chitchanok Chuengsatiansup, Toby Mur-
ray, Benjamin I. P. Rubinstein, Yuval Yarom, and Olga
Ohrimenko. Elephants do not forget: Differential pri-
vacy with state continuity for privacy budget. In Pro-
ceedings of the 2024 on ACM SIGSAC Conference on
Computer and Communications Security, CCS ’24, page
1909–1923, New York, NY, USA, 2024. Association for
Computing Machinery.

15



[37] Antti Koskela and Tejas Kulkarni. Practical differen-
tially private hyperparameter tuning with subsampling.
In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[38] Andrew Law, Chester Leung, Rishabh Poddar,
Raluca Ada Popa, Chenyu Shi, Octavian Sima, Chaofan
Yu, Xingmeng Zhang, and Wenting Zheng. Secure
collaborative training and inference for xgboost. In Pro-
ceedings of the 2020 Workshop on Privacy-Preserving
Machine Learning in Practice, PPMLP’20, page 21–26,
New York, NY, USA, 2020. Association for Computing
Machinery.

[39] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim,
Hyesoon Kim, and Marcus Peinado. Inferring fine-
grained control flow inside SGX enclaves with branch
shadowing. In 26th USENIX Security Symposium
(USENIX Security 17), pages 557–574, Vancouver, BC,
August 2017. USENIX Association.

[40] Mengyuan Li, Yuheng Yang, Guoxing Chen, Mengjia
Yan, and Yinqian Zhang. Sok: Understanding design
choices and pitfalls of trusted execution environments.
In Proceedings of the 19th ACM Asia Conference on
Computer and Communications Security, pages 1600–
1616, 2024.

[41] Qinbin Li, Zhaomin Wu, Zeyi Wen, and Bingsheng He.
Privacy-preserving gradient boosting decision trees. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 34(01):784–791, 2020.

[42] Xupeng Li, Xuheng Li, Christoffer Dall, Ronghui Gu,
Jason Nieh, Yousuf Sait, and Gareth Stockwell. De-
sign and verification of the arm confidential compute
architecture. In 16th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 22), pages
465–484, 2022.

[43] Jingcheng Liu and Kunal Talwar. Private selection
from private candidates. In Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Com-
puting(STOC), pages 298–309. ACM, 2019.

[44] Samuel Maddock, Graham Cormode, Tianhao Wang,
Carsten Maple, and Somesh Jha. Federated boosted
decision trees with differential privacy. In Proceedings
of the 2022 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2022.

[45] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Ar-
itra Dhar, David Sommer, Arthur Gervais, Ari Juels,
and Srdjan Capkun. {ROTE}: Rollback protection for
trusted execution. In 26th USENIX Security Symposium
(USENIX Security 17), pages 1289–1306, 2017.

[46] Ilya Mironov. Rényi differential privacy. In 2017 IEEE
30th Computer Security Foundations Symposium (CSF),
pages 263–275, 2017.

[47] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisen-
barth. Cachezoom: How sgx amplifies the power of
cache attacks. In Wieland Fischer and Naofumi Homma,
editors, Cryptographic Hardware and Embedded Sys-
tems – CHES 2017, pages 69–90, Cham, 2017. Springer
International Publishing.

[48] Warwick Nash, Tracy Sellers, Simon Talbot, Andrew
Cawthorn, and Wes Ford. Abalone. UCI Machine Learn-
ing Repository, 1995.

[49] Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yinqian
Zhang. Narrator: Secure and practical state continuity
for trusted execution in the cloud. In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and
Communications Security, pages 2385–2399, 2022.

[50] Olga Ohrimenko, Felix Schuster, Cedric Fournet, Aastha
Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel
Costa. Oblivious Multi-Party machine learning on
trusted processors. In 25th USENIX Security Sympo-
sium (USENIX Security 16), pages 619–636, Austin, TX,
August 2016. USENIX Association.

[51] Nicolas Papernot and Thomas Steinke. Hyperparameter
tuning with renyi differential privacy. In International
Conference on Learning Representations, 2022.

[52] Bryan Parno, Jay Lorch, John (JD) Douceur, James
Mickens, and Jonathan M. McCune. Memoir: Practical
state continuity for protected modules. In Proceedings
of the IEEE Symposium on Security and Privacy. IEEE,
2011.

[53] Thorsten Peinemann, Moritz Kirschte, Joshua Stock,
Carlos Cotrini, and Esfandiar Mohammadi. S-bdt: Dis-
tributed differentially private boosted decision trees. In
Proceedings of the 2024 on ACM SIGSAC Conference
on Computer and Communications Security, CCS ’24,
page 288–302, New York, NY, USA, 2024. Association
for Computing Machinery.

[54] Sandro Pinto and Nuno Santos. Demystifying arm trust-
zone: A comprehensive survey. ACM computing surveys
(CSUR), 51(6):1–36, 2019.

[55] Raluca Ada Popa. Confidential computing or cryp-
tographic computing? Communications of the ACM,
67(12):44–51, 2024.

[56] Zachary Ratliff and Salil Vadhan. A framework for
differential privacy against timing attacks. In Proceed-
ings of the 2024 on ACM SIGSAC Conference on Com-
puter and Communications Security, CCS ’24, page

16



3615–3629, New York, NY, USA, 2024. Association
for Computing Machinery.

[57] Alfréd Rényi. On measures of entropy and informa-
tion. In Proceedings of the fourth Berkeley symposium
on mathematical statistics and probability, volume 1:
contributions to the theory of statistics, volume 4, pages
547–562. University of California Press, 1961.

[58] Moritz Schneider, Daniele Lain, Ivan Puddu, Nicolas
Dutly, and Srdjan Capkun. Breaking bad: How com-
pilers break constant-time˜ implementations. arXiv
preprint arXiv:2410.13489, 2024.

[59] Moritz Schneider, Ramya Jayaram Masti, Shweta
Shinde, Srdjan Capkun, and Ronald Perez. Sok:
Hardware-supported trusted execution environments.
arXiv preprint arXiv:2205.12742, 2022.

[60] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clé-
mentine Maurice, and Stefan Mangard. Malware guard
extension: Using sgx to conceal cache attacks. In
Michalis Polychronakis and Michael Meier, editors, De-
tection of Intrusions and Malware, and Vulnerability
Assessment, pages 3–24, Cham, 2017. Springer Interna-
tional Publishing.

[61] Florian Sieck, Sebastian Berndt, Jan Wichelmann, and
Thomas Eisenbarth. Util::lookup: Exploiting key decod-
ing in cryptographic libraries. In 2021 ACM SIGSAC
Conference on Computer and Communications Security
(CCS), pages 2456–2473. ACM.

[62] Laurent Simon, David Chisnall, and Ross J. Anderson.
What you get is what you C: controlling side effects in
mainstream C compilers. In 2018 IEEE Symposium on
Security and Privacy (SP), pages 1–15. IEEE.

[63] David M Sommer, Sebastian Meiser, and Esfandiar Mo-
hammadi. Privacy loss classes: The central limit the-
orem in differential privacy. Proceedings on Privacy
Enhancing Technologies, 2:245–269, 2019.

[64] Samuel Weiser, David Schrammel, Lukas Bodner, and
Raphael Spreitzer. Big numbers - big troubles: Sys-
tematically analyzing nonce leakage in (EC)DSA im-
plementations. In 29th USENIX Security Symposium,
pages 1767–1784. USENIX Association.

[65] Jan Wichelmann, Ahmad Moghimi, Thomas Eisenbarth,
and Berk Sunar. Microwalk: A framework for finding
side channels in binaries. In Proceedings of the 34th An-
nual Computer Security Applications Conference, page
161–173, New York, NY, USA, 2018. Association for
Computing Machinery.

[66] Jan Wichelmann, Florian Sieck, Anna Pätschke, and
Thomas Eisenbarth. Microwalk-ci: Practical side-
channel analysis for javascript applications. In Proceed-
ings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security, CCS 2022. ACM, 2022.

[67] Luca Wilke, Florian Sieck, and Thomas Eisenbarth. Tdx-
down: Single-stepping and instruction counting attacks
against intel TDX. In Bo Luo, Xiaojing Liao, Jun Xu,
Engin Kirda, and David Lie, editors, Proceedings of the
2024 on ACM SIGSAC Conference on Computer and
Communications Security, CCS 2024, Salt Lake City, UT,
USA, October 14-18, 2024, pages 79–93. ACM, 2024.

[68] Yuanzhong Xu, Weidong Cui, and Marcus Peinado.
Controlled-channel attacks: Deterministic side channels
for untrusted operating systems. In 2015 IEEE Sympo-
sium on Security and Privacy, pages 640–656, 2015.

[69] Raymond K. Zhao, Ron Steinfeld, and Amin Sakzad.
Facct: Fast, compact, and constant-time discrete gaus-
sian sampler over integers. IEEE Transactions on Com-
puters, 69(1):126–137, 2020.

[70] Yuqing Zhu and Yu-Xiang Wang. Poisson subsampled
rényi differential privacy. In Proceedings of the 36th
International Conference on Machine Learning, vol-
ume 97, pages 7634–7642. PMLR, 09–15 Jun 2019.

17



Algorithm 4: TrainSBDT : Train a DP GBDT ensem-
ble

Input: D : training data, γ : subsampling ratio
:εinit : privacy budget for initial score
:(εtrees,δtrees) : DP parameters for training of
trees

:(r1,r2) : noise weights for leaf value
:(g∗, h∗,m∗) : gradient/Hessian/label clipping
bound

:λ, β : regularization parameters
:(Tregular, Textra) : number of regular and extra
rounds

:αmax : largest α to test in Rényi DP, d : depth
of trees

1 Tmax = Tregular + Textra

2 α̂,σ2
leaf,ρ(α̂) = Initialize(αmax,

(εtrees,δtrees), εinit,γ)
3 init0 = DPInitScore(D,m∗, εinit)
4 E = (init0)
5 for t = 1 to Tmax do
6 for i = 1 to |D| do
7 ρ

(i)
t (α) := aγ(α, α

σ2
leaf

·
(

r1·|hi |2
(h∗)2 + r2·|gi |2

(g∗)2

)
)

8 Dt = (xi : Fα̂,ρ(α̂)(ρ
(i)
1 , . . . ,ρ(i)t ) = CONT)

9 treet = TrainSingleTree(Dt,d,
σ2

leaf, g∗, h∗, (r1,r2),λ, β, E)
10 E = (init0, tree1, ..., treet)

11 return E

A Ablation study on early tree stopping

In Figure 4 we provide an ablation study on the abalone
dataset for a varying number of maximal number of trees.
We observe that for 50 trees, early stopped S-BDT performs
on par for low ε compared to the HP-tuned an non-HP-tuned
variant but fail to reaches a good RMSE for higher ε. Choosing
600 trees allows early stopped S-BDT to capture a good utility
for a high ε while at the same time performing much better
than non-HP-tuned S-BDT and within the vicinity of leaky
HP-tuned S-BDT

B Pseudocode for Constant-Time S-BDT

C Postponed proofs

Theorem 9. Algorithm 3 satisfies (1 7→ ρinput(α))-Timing
Privacy.

Proof. Let X ∼ X′ be two neighboring data sets and y ∈ R
an arbitrary output. Let Tmax be the number of trees, d the
depth of trees, αmax · σmax the number of iterations performed

Algorithm 5: DPInitialScore : Compute a DP initial
score

Input: D : training dataset, m∗ : clipping bound on
labels

:εinit : DP privacy budget for initial score
:εds = 0.025: DP privacy budget for dataset size

1 |D|priv = |D|+ Gauss(0,2 · ln (1.25/δ)/ε2
ds)

2 if regression then
3 M = 1

|D|priv
∑yi∈D clamp(yi,−m∗,m∗)

4 Mpriv = M +

Gauss(0,2 · ln (1.25/δ)(m∗/(|D|priv · εinit))2)
5 return Mpriv

6 else if classification then
7 M = 1

|D|priv
∑yi∈D clamp(yi,0,m∗)

8 Mpriv = M +

Gauss(0,2 · ln (1.25/δ)(m∗/(|D|priv · εinit))2)
9 return ln(Mpriv/1 − Mpriv)

Algorithm 6: TrainSingleTree: Train a DP decision
tree

Input: D : training data, d : depth of trees
:σ2

leaf : unweighted variance of Gaussian for
leaves

:(g∗, h∗) : clipping bound on gradients and
Hessians

:(r1,r2) : noise weights for leaf value
:λ, β : regularization parameters
:E : ensemble of trees up to round t − 1

1 P = PredictEnsemble(Dt, E,η)
2 ComputeGradientsHessians(P , Dt)
3 PoissonSubsample(D,γ);
4 treet = RandomTree (d)
5 for each leaf l in treet do
6 v =DPLeaf(l, D, g∗, h∗,σ2

leaf, (r1,r2),λ, β);
7 SetLeaf (treet, l,v);

8 return treet;
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Figure 4: S-BDT on abalone [48] with privacy-leaky hyperparameter-tuning (green), with statically chosen hyperparameters
(orange), or with early stopping (blue). We plot the privacy-utility tradeoff (left) and the selected number of trees (right). Evaluated
on 200-repeated 5-fold cross-validation.

Algorithm 7: DPLeaf : Compute a DP leaf node
Input: D : training data, l: leaf node identifier

:(g ∈ D, h ∈ D) : gradient/Hessian of data
points in D

:(g∗, h∗) : clipping bound on gradients and
Hessians

:(r1,r2) : noise weights for leaf value
:λ, β : regularization parameters
:σ2

leaf : unweighted variance of Gaussian for
leaves

1 w =
∑h∈D Clamp(h,0.0, h∗) · 1{data point is in leaf l}

2 w̃ = λ + w + Gauss(0.0, (h∗)2σ2
leaf/(2 · r1))

3 u =
∑g∈D Clamp(g,−g∗, g∗) · 1{data point is in leaf l}

4 ũ = u + Gauss(0.0, (g∗)2σ2
leaf/(2 · r2))

5 return Clamp(v = ũ/w̃,−β, β)

in Algorithm 8. Let l̃ := |X| + N (0,1/εinput) be the DP
approximated input length of input X.

By direct analysis we get the following components of
Algorithm 3 and their runtime: Gaussian sampling and noising
input length (2 time steps), Algorithm 8 (αmax · σmax · 16),
Algorithm 5 (l̃ · 2 + 6), in Algorithm 4 updating individual
privacy budgets (l̃ · (11+ (αmax − 1) · 11+ 12)) and filtering
(l̃), Algorithm 9 (l̃), Algorithm 10 ((2d − 1 + 2d · 2 + 2),
Algorithm 11 (l̃ · 2), Algorithm 12 (l̃ · 2), generating uniformly
random splits for the random tree (2d+1 − 1), Algorithm 7
(2d · (l̃ · 3 + 3 + l̃ · 3 + 2 + 1) and writing output back to
memory (2d+1 − 1) · Tmax). We observe a constant amount
of operations independent of input length

K = 2 ·
(

4 + 8αmaxσmax − Tmax + 5 · 2dTmax

)

and a constant amount of iterations for each data point in the
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Algorithm 8: Initialize Rényi DP accountant
Input: αmax : largest α to test in RDP, γ : subsampling

ratio
:(εtrees,δtrees) : DP parameters for training of
trees

:εinit : privacy budget for DP initial score
1 T = ()
2 for α = 2 to αmax do
3 for σ2

leaf in (0.0,1000.0] do
4 ρsubsampled-tree = aγ(α, α

σ2
leaf

)

ρ(α) = Tregular · ρsubsampled-tree

ε′trees = ρ(α) + log α−1
α − logδtrees+logα

α−1

5 Append(T , (α,σ2
leaf,ρ(α), ε

′
trees))

6 Pick (α̂,σ2
leaf,ρ(α̂), ε

′
trees) from T so that σ2

leaf is
smallest and ε′trees is close to εtrees

7 Report εinit + ε′trees to user
8 return α̂,σ2

leaf,ρ(α̂)

Algorithm 9: PredictEnsemble : Compute prediction
of ensemble

Input: D : data
:E : ensemble of trees
:η : learning rate

1 P = ()
2 if ensemble has initial score then
3 for each data point x in D do
4 Let i be the index of x
5 P [i] = E[0]

6 for each data point x in D do
7 Let i be the index of x
8 for each tree t in E do
9 Let r be the root of t

10 P [i] = P [i] + f dsayxη · PredictTree(r, x)

Algorithm 10: PredictTree : Compute prediction of
tree

Input: n : node of tree
:x : data point

1 if n is leaf then
2 return prediction of r

3 Let l,r be the left and right children of n
4 left-prediction = PredictTree(l, x)
5 right-prediction = PredictTree(r, x)
6 Let j, a be split attribute and split value of n
7 if x[j] ≥ a then
8 return right-prediction

9 else
10 return left-prediction

Algorithm 11: ComputeGradientsHessians : Com-
pute gradients and Hessians

Input: P : ensemble prediction on D
:D : data

1 if regression then
2 for each data point xi in D do
3 gi = P [i]− yi
4 hi = 1
5 Save gradient and Hessian to D

6 else if classification then
7 for each data point xi in D do
8 gi = 1/(1 + exp (−P [i]))− yi
9 hi = (yi + gi) · (1 − yi − gi)

10 Save gradient and Hessian to D

Algorithm 12: PoissonSubsample : Generate a Pois-
son subsample

Input: D : data
:γ : subsampling ratio

1 for each data point xi in D do
2 b = BernoulliBit
3 if b == 1 then
4 Set xi active in current round

5 else if b == 0 then
6 Set xi inactive in current round
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input

k =2 +
(35 + 9 · 2d + 22αmax)Tmax

2

+
(1 + 3 · 2d)T2

max

2

We compute the Timing Privacy guarantee

Dα(TM(X,env)|out(M(X,env))=y||
TM(X′,env′)|out(M(X,env))=y)

= Dα(N (|X|+ K,k2 · 1/εinput)||
N (|X′|+ K,k2 · 1/εinput))

= Dα(N (0,k2 · 1/εinput)||N (1,k2 · 1/εinput))

Using [46, Proposition 7]

≤ α

2 · k2 · 1/εinput
=: ρinput(α)
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