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Recap Differential Privacy (DP):

Using a
Pr[M(D) € S] <e®-Pr[M(D') € S]+ 6 public

dataset

— an adversary cannot confidently infer
information about a specific individual
from the output of a randomized
algorithm

« Protects against all known and unknown
attacks

« Privacy loss € can be quantified [1]

« Multiple mechanisms can be composed

[1] Zeiler, M.D., Fergus, R. (2014). Visualizing and Understanding Convolutional Networks. In: European Conference on Computer Vision- ECCV 2014, pp 818-833.
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Feature extraction for
differentially-private machine learning

« Strong feature extraction Using the
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Research Questions

How should we design feature spaces for
different classifiers e.g. DP-SGD, Gradient-
Boosted Decision Trees?

Which measures are relevant in high-
dimensional spaces?

Which off-the-shelf feature extraction models
lead to good utility-privacy trade-offs?

Can we use certain dataset property measures
to choose suitable feature extractors for
downstream DP classification?
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Experiments
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Tested example datasets
« CIFAR10/ CIFAR100

* Oxford flowers

« Oxford pets

« MedMNIST (blood, path,
organ, breast)

- Used toy datasets with diverse pre-
trained feature extractors

- Evaluated separability-, entropy-,

and clustering-based measures . fo0d101

(supervised, unsupervised, and o etrained models

DBSCAN-based) « DINOv1, DINOv2,
 Linked these measures to DP DINOv3 (ViT, ConvNext,

performance and the DP vs. non-DP tiny, small, base)

gap as well as the normalized DP * SIMCLR (ResNet-50)

balanced accuracy * MoCov2 (ResNet-50)

... (many more)
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Tested example datasets g bersion — Ragdoll
- CIFAR10 / CIFAR100 d .n mn /"‘ «m\?l .-
 Oxford flowers e S e : — Keeshond
» Oxford pets e m e
+ MedMNIST (blood, path, ‘ ﬁ - 3.
Organ, breast) vBusset Hound ) Miniature Pinscher
» food101

| | mg
A\ . \ ’ =

Staffordshire Bull Terrier English Cocker Spaniel
' - | AN 'Q\‘ S
N 5 b
& L ]

New Found Land Pomeranian Leonberger American Pit Bull Terrier Wheaten Terrier

0. M. Parkhi, A. Vedaldi, A. Zisserman, C. V. Jawahar
Cats and Dogs, IEEE Conference on Computer Vision and Pattern Recognition, 2012
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Experiments

ResNet-50,
DINOv2 vit-small pretrained on ImageNet
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Examples: NS

e Silhouette Score
e Calinski-Harabasz Index : _ VK 2
_ th tr(Sp) = Y%_ C.—C
(normalized Trace Ratio) — tr(Sp)/(K —1)  Withtr(Sp) Zk_lnk“ « ll 2
tr(Sw)/(N = K)  and tr(Sw) = Z¥oy X%, mie || X = Ci|

* Davies-Bouldin Index

* Class Granularlty Index ny Number of observations in cluster k
. . Ck Centroid of cluster k
* Geometrical Separablllty Index Xik The i-th observation of cluster k
K Number of clusters

e Fisher Discriminant Ratio

° Prototype Separab|l|ty Calinski, T., & Harabasz, J. (1974). A dendrite method for

cluster analysis. Communications in Statistics, 3(1), 1-27.
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Metrics

Current metrics mainly focus on separability,
cluster structure and subpopulations

Examples:
e Silhouette Score

» Calinski-Harabasz Index
(normalized Trace Ratio)

» Davies-Bouldin Index

 Class Granularity Index

» Geometrical Separability Index
 Fisher Discriminant Ratio

* Prototype Separability
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P (fO) + f(x)

GSI =
n
n Dataset size
f Target function
X Dataset
X; Nearest neighbour of x;

Thornton, C. Separability is a Learner’'s Best Friend. In: 4th
Neural Computation and Psychology Workshop (1998)
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Class Granularity Index + Subpopulation
Isolation Score (DBSCAN-based):

To what extent do intra-class sub-populations
impact the performance and stability of
differentially private classification models?
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Experiments (DP-SGD)

Correlation of measures and metrics
with the DP classification accuracy/ the
gap between DP and non-DP
classification accuracy, averaged over
all datasets and all feature extraction
models (¢ = 0.5)

Highest correlations:

e (Calinski-Harabasz index

* Direct separability index

 Class granularity index

» (Geometrical separability index
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Experiments (DP-SGD) dﬂé Intel1igonce i
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Demo

Dataset Controls

Namber i cses Dataset Metric Explorer

—_—

Recalculate metrics or run classification (inclu DP) below.

Subpopulations per class

) C h a n ge d a t a S et — Synthetic dataset visualization

Samples per class

characteristics — T e

Cluster std (within subpop) . Class3
i v Class centers

R ——

* Observe changes

B —

in measures

—

DBSCAN min_samples

* DP/Non-DP -

Random seed

classification a

Adjust class centers
manually

Select class to edit

0
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Fisher Discriminant Ratio
m

9.822

4 -10.672

] Prototype Separability +

3.934

Class Granularity Index +

0.132

¥ -0.202

Choose metrics to calculate

8 Recalculate selected metrics
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Example: Facial
Expression
Classification

On CK+ and CelebA Datasets
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Example Dataset
CK+ emotion recognition dataset

- Multi-class classification of 7 posed facial
expressions (+neutral expression):

 Happiness « Sadness

* Fear « Contempt
» Disgust * Surprise
 Anger

- 123 subjects, 593 short video sequences

- Each sequence: onset (neutral) to peak
formation of the facial expression

©Jeffrey Cohn

P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar and I. Matthews, "The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action
unit and emotion-specified expression," 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops, San
Francisco, CA, USA, 2010
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Facial Expression Classification
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Privacy Friendliness:
Facial Expression Classification

Evaluation of feature extractors under different DP
budgets:

» Depending on the privacy budget used, different
feature extractors can be recommended

e Calinski-Harabasz index (Trace Ratio) and

Geometrical Separability Index correlate with the
DP performance
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[ 0 FaceXFormer Backbone
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Results Explainability
CK+ Dataset; StyleGAN features

Contempt  Disgust Fear Happiness Sadness Surprise

Original  Inversion  Anger

Subjects
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Questions / Contact

Nele Sophie Brigge
nele.bruegge@dfki.de

Researcher @ DFKI Lubeck

German Research Center for Artificial Intelligence (DFKI)
Building 64, 2nd floor, room 12

Ratzeburger Allee 160

23562 Lubeck, Germany
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