Seminar Presentations

Präsentationen und Vorträge aus unseren Seminaren.

Alle Seminare

29. Januar 2026

Privacy-Friendliness of Feature Extractors: Empirical Insights, Metrics and Correlations

Speaker

Nele Brügge

"Feature extraction is widely used to improve utility in differentially private (DP) classification, often under the assumption that pretrained or foundation models inherently provide privacy-friendly representations. In this presentation, we challenge this assumption through an empirical study of feature extraction methods across multiple image classification datasets. Our aim is to analyse how dataset metrics relate to downstream DP performance and what insights they offer into dataset characteristics. Finally, we apply these metrics to more challenging facial classification datasets. First findings suggest that strong features are not necessarily privacy-friendly features, emphasising the importance of a more systematic evaluation of representation learning in privacy-sensitive settings."

VideoSlides

Answering Many Database Queries With High Privacy and Precision

18. Dezember 2025
Dennis Breutigam

Hardware-accelerated NTT: New Perspective

17. Juni 2025
Saleh Mulhem
Video

Towards a Unification of Reconstruction Attacks on Syntactic Privacy Models

05. Juni 2025
Niklas Zapatka
VideoSlides

Towards Learning Differentially Private Probabilistic Relational Models II

08. Mai 2025
Malte Luttermann
VideoSlides

Towards Learning Differentially Private Probabilistic Relational Models I

24. April 2025
Malte Luttermann

A Tale of Fully-Homomorphic Encryption and its Applications in Healthcare

21. Juni 2024
Saleh Mulhem

Optimizing for Statistical Independence using a KNN Density Estimator

23. Mai 2024
Kathleen Anderson

Feature extraction as a primer for privacy-preserving medical data analysis: Example approaches for facial video data

11. April 2024
Nele Brügge

DP Helmet: Distributed Non-Interactive Privacy-Preserving Learning of Convex Optimization problems

14. März 2024
Moritz Kirschte

The Principles of the GDPR (Die Prinzipien der DS-GVO)

01. Februar 2024
Herr Bruegger und Herr Zwingelberg vom ULD (Unabhängiges Landeszentrum für Datenschutz)
Page 1 of 2
AnoMed ist Teil des:
Forschungsnetzwerk Anonymisierung Logo
Gefördert durch das Bundesministerium für Bildung und Forschung
Finanziert von der Europäischen Union